Terminal wiring

KPM 75 Power Quality Analysis Meter Instruction Manual V1．1

1．Outline

The KPM75 Power Quality Analyzer is designed using advanced microproces－sors and digital signal processing technology．The comprehensive three－phase power measurement，display，energy accumulation，power quality analysis，fault alarm，digital input strong anti－interference ability，it can still work stably in places with serious elect－romagnetic interference．
1．2 Application
Measurement\＆Monitor energy parameter of distribution system Collect energy consumption data that cost center analysis needs Power quality analysis．
Power quality analysis．
． 3 Function Features
Measuring three－phase phaselline voltage，three phase current，positive／nee
－ative sequence voltage，positive／negative sequence current，active／reactive power，active／reactive energy，power factor，frequency and other 30 kinds of
asicparameters． Measure\＆show monthly
monthly reactive power．
.5 S level two－way four－quadrant power statistics and multi－rates statistics．
Demand statistic and record the Max．
Demand statistic and record the Max．
Working time，load time statistics．
Working time，load time statistics．
Fifty of volage swells，dips and interuptions can be recorded
Support up to to 6 h harmonic calculation，total harmonic distortion rate
Firy ofvoitiage swelis，sips and interuptions can be recorded
Support up to 63 harmonic calculation total harmonic distortion
calculation，imbalance rate，the current K－factor calculation．
Calculation of short－term flicker and long－term flicker values of voltage and
extremes of fluctuation
Standard 1 channel RS485 interface，Modbus protocol，Scalable Profibus－DP communication module
Expandable e 4 －way DI
Expandable 4 －way DI
Expandable 4 －way DO
Expandable $1-$ way DO
ExpomA analog output
Expandable 1 －way passive optical coupler c
Expandable 1 －way PT 100 temperature input．
256 points／cycle voltage，current sampline ingut． ．high measurement accuracy．
$160^{*} 160$ lattice large LCD screen
Lenvil still good visual effect．
2，Technical Parameters
2．1 Environmental conditions
Operating temperature：$-25^{\circ} \mathrm{C} \sim+70^{\circ} \mathrm{C}$
Storage temperature：$-30^{\circ} \mathrm{C} \sim+75^{\circ} \mathrm{C}$
Relative humidity： $5 \% \sim 95 \%$
Altitude ： 3000 meters below

4．Function Description
4．1 Power symbol
KPM75 provides bidirectional power calculation，power and powe factor polarity indication as shown in the figure．

The KPM75 Power Quality Analyzer uses an advanced microprocessor and digital signal processing technology．The
comprehensive three－phase power measurement，display，energy accumulation，power quality analysis，fault alarm，digital input， accumulation，power quality analysis，fault alarm，digital input，
relay output and network communica－tion are integrated．With strong anti－interference ability，it can still work stably in places with serious electromagnetic interference．
4．3 Demand
Power systems often charge fees based on the user＇s powe level（in the form of active power）．Demand is the average powe over a certain time interval．
The KPM75 uses a common slip demand algorithm to calculate the

Update calculations at each calculation cycle

the average value a
the average value a
the end of the last
tal

Slip time：time interval for recursive measurement of maximu emand，which can be selected in 1．2．3．5．10．15．30min．

Demand cycle：Setting range 1～15 slip times

4．4 Switch input

KPM75 provide 4channel switch input，used to detect the circuit breaker position signal，switch position signal and other status information．DC24V power supply is provided inside the equipment，when the scene requires a binary input function，
external access passive contact signal，when the exter－nal contact closed，the corresponding switch input state is also turned on

2．2 Rated parameters

Device working power supply：A
Rated AC data
Phase voltage： $57 \mathrm{~V} / 2220 \mathrm{~V} / 400 \mathrm{~V}$,
AC current： 5 A or 1 A （Order des
AC current： 5 A or 1 A
Frequency： 50 Hz
Switch in
output．
Small high power relays：
Contact capacity： $250 \mathrm{VAC} / 5 \mathrm{~A}, 30 \mathrm{VDC} / 5 \mathrm{~A}$
Pol
Contact capacity： $250 \mathrm{VAC} / 5 \mathrm{~A}, 30 \mathrm{VDC} / 5 \mathrm{~A}$
Power consumption
AC voltage loop：$<0.5 \mathrm{VA} /$ phase（rated）
AC voltage loop：$<0.5 \mathrm{VA} /$ phase $($ rated $)$
AC current loop：$:<0.75 \mathrm{VA} /$ phase $(5 \mathrm{~A})$
AC current loop：＜0． $25 \mathrm{VA} /$ phase（ 1 A ）
Device power supply circuit．$<3 V \mathrm{VA}$
Device power suppl｜
Overload capacity
AC voltage locop 1.1 .2 time
rated voltage，Allow 10 S
AA curren
AC current toop： 1.2 t time
rated voltage，Allow 1 S

3．Selection and Installation

3．1 Selection criteria
KPM 75 －

KPM 75 －\square

4．5 Relay output
KPM75 provides two relay actions，the user to identify the relay is
in the remotecontrol or control alarm．Different control mode，the relay action mode is different．
Remote control： Remote control： Relay through the
the PC or PLC．

the PC or PLC． Limit alarm contro

Limit alarm control：
The relay is controlled by an electrical parameter inside the mete as a respon－se to a set point control alarm condition．
The two relays action mode as follows
Remote control：
Remote control：
By accepting a PC or PLC command，relay
By accepting a PC or PLC command，relay closes．The relay
status will remain on still the PC or the PLC will issue a release command，or the meter power loss．

When the alarm signal of the trigger relay is generated，relay
action．Until the alarm condition of all trigger relays disappears or the meter is out of order，the relay is released．If the meter
recovers the power and the alarm condition per－sists，the relay recovers the power and the alarm condition per－sists，the relay
will act again． 4．6 Pulse
4．6 Pulse
KPM75 provides active／reactive energy metering， 1 active energy pulse out－put function，and adopts optocoupler open collecto
output．The method of energy accuracy inspection refers to the national measurement．
Regulations：standard table of pulse error comparison methods． Electrical characteristics：Open collector voltage VCC $\leq 48 \mathrm{~V}$ current $\mathrm{Iz} \leq 50 \mathrm{~mA}$ ．
Pulse constant： $3200 \mathrm{imp} / \mathrm{kWh}$ ．Its significance is：when the meter accumulates 1 kWh ，the number of pulse outputs is 3200 ，and it is necessary to emphasize that the 1 kWh is the secondary side
energy data of electric energy．In the case of PT and CT，the energy data of electric energy．In the case of PT and CT，the
relative N pulse data corresponds to the primary side power is： N／3200 \times voltage transformation ratio \times Current ratio（kWh） Application examples
The external pulse counting device assumes that the number of pulses collected during a period of length T is N ，and the
instrument input is： $10 \mathrm{kV} / 100 \mathrm{~V}$ 400A／5A then the meter energy instrument input is： $10 \mathrm{kV} / 100 \mathrm{~V}, 400 \mathrm{~A} / 5 \mathrm{~A}$ ，then the meter energy accumulation during this period is： $\mathrm{N} / 3200 \times 100 \times 80 \mathrm{kWh}$ 4．7．Analog output
Analog output 4 mA corresponds to the lower limit of the measuring range and 20 mA corresponds to the upper limit of the
measuring range．When the range is exceeded，the transmitting current increases linearly．The maximum effective output is 120% of the measuring range，the maximum output current is 24 mA ， and the maximum load resistance is 400 ohms ．

Power factor

 Note：Terminals $5,6,7$ i s st
Rs485．
3．4 Typical wiring Note：Terminals $5,6,7$ is sta
Rs 485.
3．4 Typical wiring
KPM75 provides star system and triangular system wiring mode，the
com－mon wiring mode is as ofloww：
3．4．1 1 Star system wiring mode（Suitable for $400 / 690$ and ，

Instruction： $\mathrm{P}=(\mathrm{Px}-12) \times \mathrm{PE} \times \mathrm{CT} \times \mathrm{PT} / 8, \mathrm{Px}$ is actual measured
value of the analog，unit： mA, PE is corresponding rated power value of the analog，unit： mA, PE is corresponding rated power
value，unit： W ，the $P E$ values corresponding to different voltage levels are different．

$100 \mathrm{~V} / 5 \mathrm{~A}: \mathrm{Pe}=1500 \mathrm{~W} 100 \mathrm{~V} / \mathrm{A}: \mathrm{P}=6000 \mathrm{~W}$
Note：$P E=$ Rated voltage \times Rated current when transmitting single－phase
5．Operating instructions
5．1 Operating display
There are five touch keys on the front panel，from left to right the
five touch buttons are \triangle ．\triangle ．The display of different mea－
surement data and the setting of parameters can be realized through the operation of five keys．

The menu of measurement display structure is as follows
Press \boxtimes key，it will cycle as shown below：

5.2 In the＂Meter＂function display item，press Δ or $⿴ 囗+{ }^{2}$ key to display the realtime measurement data in turn．When the measurement data （excluding energy data）is greater than 9999 ，the unit of the measured data is displayed before the＂K＂，such as kW ；When it is greater than
picture shows：

1：Display three phase voltage，current line voltage and frequency	2：Displays three－phase and total ac－ tive power，reactive power，apparent power and power factor

$\underset{\text { Time statistics：}}{\substack{<\text { Meter }}}$

Runtime：
O0000DayobHour23Min
Loadtime：
O00000ay 5 Hour20Min
ब \triangle 回

5.4 On the most value query display interface of "MAX\&MIN", press the scroll down or use the $\boldsymbol{\Delta}$ to scroll through the screen as minimum values of the measured data at the same time. As shown below
6.1.2 Relay control (function code 05H)

Ad	Fun	$\stackrel{\text { Dor }}{\text { adi }}$	$\stackrel{\text { Dor }}{\text { addr }}$	${ }_{\text {Value }}^{\substack{\text { Vilue }}}$	$\underset{\substack{\text { Value } \\ 10}}{ }$	CRC1 6 hi	${ }_{6}^{\text {CRC1 }}$
+	${ }_{\text {O }}$	xx	xx	АА	55H	xxH	xxH
Response data frame:							
Ad dr dr	${ }_{\text {nu }}^{\text {nu }}$	$\stackrel{\text { dor }}{\text { addr }}$ ($\underset{\substack{\text { Value } \\ \text { hi }}}{\substack{\text { a }}}$	${ }_{10}^{\text {Value }}$	CRC1 6 hi	CRC1 6.0 10
+01	-	xx	xx	ААН	55H	xx	xx

6.2 Read switch input status (function code 02H)

 Query data frame:This function allows the user to obtain the statusof ON/OFF($1=\mathrm{ON}, \mathrm{O}=\mathrm{OFF}$) of the switch input DI.In addition to the slave address and the function field, the data frame needs to included the initial address and the number of Dis to be read in
the data field. The address of DI in KPM75 starts at 0000 H ($\mathrm{D}|1=0000 \mathrm{H}, \mathrm{D}| 2=0001 \mathrm{H} \ldots$ and so on). The switch inpu erminals DI1 to DI4 correspond to Bito to Bit3.
The following example shows the state of the D11 to DI2 read from
he slave address 01

Response Data Frames: The response contains the slave address,
function code, number of data, packet and CRC check, each bit in function code, number of data, packet and CRC check, each bit in
the packet occupies one bit ($1=\mathrm{ON}, 0=\mathrm{OFF}$), the least significant the packet occupies one bit ($1=O N, 0=O F F$), the least significant
bit of the first byte is the addressed DI1 value. The rest are arranged in order of high, and the unused bits are filled with $=\mathrm{ON}, \mathrm{DI2}=\mathrm{ON})$ response.

Addr	Fun	Byte count	Data	CRC16 hi	CRC16 lo									
01 H	02 H	01 H	03 H	E1H	89 H		Addr	Fun	Byte count	Data	CRC16 hi	CRC16 lo		
:---:	:---:	:---:	:---:	:---:	:---:									
01 H	02 H	00 H	03 H	E1H	89 H									
The meaning of each bit in Data							Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 11	Bit 0
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:							
0	0	0	0	0	0	1	1	6.3 System parameters read and write						

This area stores system parameters related to equipment work,

including parameters such as communication, connection mode voltage transformation ratio, and current transformation ratio, \begin{tabular}{l}
using the 10 H function code setting.

| Address | Parameters | Ra |
| :--- | :--- | :--- |

\hline
\end{tabular}

Address	Parameters	Range of values	ype
0000	Password	$0 \sim 9999$	Word
1H	Modbus Address	Modbus MailingAddress:1 ~ 247	Word
0002 H	Baud Rate and check mode	Baudrate (Bit0~7) :0 :1:24002:4800 :9600 4.192005 .38400 data Format (Bit8~+) :	Word
000	Voltage to	~ 9999	Word
0004 H	Current to variable ratio	1~9999	Word
0005H	Wining method	$0: 3$ LN 3CT Three-phase four-wire 0 : $1: 2 L L 2 C T$ three-phase 2CT $2: 2 L L$ 3CT three-phase 3CT	Word
0006H	Transmitter settings		Word
0007H	Backlight lit time	0~-(min): n never extinguished;	Wo
0008H	Keep		
0009H	Maximum minimum value Clear method	0 : Never clear 1: Day cleared,2: Month cleared	Word
000BH	Clear Maximum		Word
000CH	Clear All power	Command word 0×5578, Clean power immediately	Word
000DH	Device fault Indication		Word

5.5 In the "History" history data display interface, press \square to scroll down or use \boldsymbol{A} to scroll through the interface as shown in
the following figure. Among them, EPT - total active energy, EQT total reactive energy, JEP - active energy, JEQ - sharp reactive energy, FEP - peak active energy, FEQ - peak reactive energy Active Energy, GEQ-Valley En -
Active Energy, GEQ-Valley Energy.

| 1: Multi-rate energy statistics for this month | 2: Multi-rate energy statisticis last month |
| :--- | :--- | :--- |

6.4 Basic Measurement Parameters Area The basic measurement area mainly measures basic voltage,
current, power, power factor,etc.analysis of sequence quantity current,power,power factor,etc.analysis of sequence quantity
and imbalance,voltage and current imbalance in the power grid is an important parameter to measure power quality.Demand is calculated using the slip algorithm, which is to set a window time, once every minute, and the demand value is updated once. All parameters in this area are real-time measuremen
parameters, which are read using the Modbus protocol 03 parameters,which are read using the Modbus protocol 03H
function code and are read-only.The data format is floating-point data. The data in this area has been multiplied by the ratio-phich is a real-time data measured at one time.

Address	Parameter	Data type	Unit
0030 ${ }^{\text {H }}$	Phase voltage Ua	${ }_{\substack{\text { cheoting } \\ \text { point }}}^{\text {Flo }}$	v
0032H	Phase voltage Ub	Floaing	v
0034H	Phase voltage Uc	$\underset{\substack{\text { Floating } \\ \text { point }}}{\text { ceit }}$	v
0036	Line voltage Uab	${ }_{\substack{\text { Froating } \\ \text { point }}}^{\text {a }}$	v
0038H	Line voltage Ubc	$\underset{\substack{\text { Floating } \\ \text { point }}}{\text { a }}$	v
003AH	Line voltage Uca	$\underset{\substack{\text { Foating } \\ \text { point }}}{\text { a }}$	v
003CH	Phase current la	$\underset{\substack{\text { Floating } \\ \text { point }}}{\text { a }}$	A
003EH	Phase current Ib	$\underset{\substack{\text { Froating } \\ \text { point }}}{\text { a }}$	A
0040H	Phase current ic	$\underset{\substack{\text { Floating } \\ \text { point }}}{\text { coid }}$	A
0042H	Split-phase active power Pa	$\underset{\substack{\text { Foating } \\ \text { point }}}{\text { aten }}$	w
0044H	Split-phase active power Pb	$\underset{\substack{\text { ploating } \\ \text { point }}}{\text { end }}$	w
0046H	Split-phase active power Pc	$\underset{\substack{\text { Foating } \\ \text { point }}}{\text { a }}$	w
0048H	System active power Psum	$\underset{\substack{\text { Floating } \\ \text { point }}}{\text { ate }}$	w
004AH	Split-phase reactive power Qa	$\underset{\substack{\text { Floating } \\ \text { point }}}{\text { end }}$	var
004CH	Split-phase reactive power Qb	${ }_{\text {coinding }}^{\text {point }}$	var
004EH	Spili-phase reactive power Qc	$\underset{\substack{\text { Fraating } \\ \text { point }}}{ }$	var
0050 H	System reactive power Qsum	${ }_{\text {Foaing }}^{\text {point }}$	var
0052H	Split-phase apparent power Sa	$\underset{\text { pooaing }}{\text { point }}$	va
${ }^{0054 H}$	Split-phase apparent power Sb	$\underset{\substack{\text { Foating } \\ \text { point }}}{\text { a }}$	VA
0056H	Split-phase apparent power Sc	$\underset{\substack{\text { Floating } \\ \text { point }}}{\text { ate }}$	VA
0058H	System apparent power Ssum	${ }_{\text {Floatingpoi }}^{\text {nt }}$	VA
005AH	Split-phase power factor PF1	$\underset{\substack{\text { Floating } \\ \text { point }}}{\text { a }}$	
005CH	Split-phase power factor PF2	$\underset{\substack{\text { Floating } \\ \text { point }}}{\text { coid }}$	
005EH	Split-phase power factor PF3	${ }_{\text {coin }}^{\substack{\text { poaing } \\ \text { point }}}$	
0060 ${ }^{\text {H }}$	System power factor PF	$\underset{\substack{\text { Floating } \\ \text { point }}}{\text { end }}$	
${ }^{0062 H}$	System frequency F	${ }_{\text {coind }}^{\text {poaing }}$	Hz
0064 H	Positive sequence voltage U1	$\underset{\substack{\text { Floating } \\ \text { point }}}{\text { ate }}$	V
0066H	Negative sequence voltage U2	$\underset{\substack{\text { Floating } \\ \text { point }}}{\text { a }}$	v
0068H	Positive sequence current value	$\underset{\substack{\text { FFoating } \\ \text { point }}}{\text { ate }}$	A
006AH	Negative sequence ${ }_{12}$	$\underset{\substack{\text { Foating } \\ \text { point }}}{\text { F }}$	A
006CH	Voltage unbalance Yv	$\underset{\text { point }}{\text { poating }}$	\%
006EH	Current imbalance $\mathrm{Yi}^{\text {i }}$	$\underset{\substack{\text { ploating } \\ \text { point }}}{\text { a }}$	\%
0070H	Active demand	Floating	w
0072H	Reactive demand	$\underset{\substack{\text { Floating } \\ \text { point }}}{\text { cea }}$	var
0074H	Apparent demand	$\underset{\substack{\text { Fioating } \\ \text { point }}}{\text { a }}$	va
0076H	Temperature	$\underset{\substack{\text { Floating } \\ \text { point }}}{\text { a }}$	${ }^{\circ} \mathrm{C}$
0078H	Three-phase average phase voltage	$\underset{\substack{\text { Floating } \\ \text { point }}}{\text { a }}$	v
007AH	Three-phase average line voltage	$\underset{\substack{\text { Floating } \\ \text { point }}}{\text { ate }}$	v
007EH	Zero-sequence voltage value U0	$\underset{\substack{\text { Floating } \\ \text { point }}}{ }$	v
0080H	Zero-sequence current value io	$\underset{\substack{\text { Floaing } \\ \text { point }}}{\text { ata }}$	A

5.6.Parameter setting

Press the key to enter the password input interface on the
measurement interface. The default password is 6666 . Press measurement interface. The default password is 6666. Press
key to confirm after the password is entered. If the input is correct, enter the parameter setting interface. If the input is incorrect, it will continue to display the password input interface. Press the \boxtimes key to exit the programming interface In the parameter setting interface, press \square key to scroll down or
use \triangle key up could switch the parameter item to be modified use Δ key up could switch the parameter item to be modified.
Press the emey to enter the modification status of the parameter Press the key to enter the moditication status of the parameter
size, accompanied by the flashing of the modified character Size, accompanied by the flashing of the modified character,
After the modification, press the \square key to exit the parameter modification status at the same time and return to the measurement interface. There are two pages in the setup page, you can press \square key to switch. When the user does not press
any key within 30 seconds under the modified state of the parameter, it will automatically return
display interface of the electrical paramete
 s: The order is to modify the
power zero and password.

6.1 Relay output control and status read This area stores the relay status. The user can read the current
status using the Modbus protocol 01H function code and use the

6.1.1 Read relay output status (function code 01H)

Request data frame: Read the status of Relay 1

Response Data Frame: The slave responds to the host's data frame.
Contains slave address, function Contains slave address,function code,number of data byte, relay
status data,and CRC check. Each relay in the data packet occupies one bit ($1=\mathrm{ON}, 0=\mathrm{OFF}$). The first bit of the first byte is the lowest byte of the first byte. Address the relay state value, the rest of the
order to the high order, useless bits filled with 0 . Read the contents of the digita bits filled with 0 .
\qquad

prameater	Display	Defauls	meaning
$\begin{gathered} \text { Protect } \\ \text { password } \end{gathered}$	Passurad	666	
Wing	Wing	${ }^{\text {3 пизтт }}$	Three-phase four-wire system, 2LL2CT and 2LL3CT are
Rated voluge	Un	220	Can be estat 000, 20, 20,400
Raled curent	m	5	Canbesetto, $1,5,10$
Voltage	${ }^{\text {pr }}$	1	Volisge tanastomerataio(1-9999)
Curentrato	ст	1	Current trastomeratiol (1-9999)
	Adr	1	Insumentadatress tor enework communication (1-247)
Badtata	BaudRate	950	
Dataf fomat	Patity	${ }_{8.1-1}$	
Backlight Backight	BL_OY	001	Unit: minutes; if set to 0 , the backlight will never go out
${ }_{\text {den }}^{\substack{\text { Demanastip } \\ \text { Uime }}}$	$\mathrm{DM}_{\text {_Time }}$	${ }^{05}$	1-99, unite minue
$\underset{\substack{\text { Transer } \\ \text { procect }}}{\substack{\text { n }}}$	${ }^{\text {an_opt }}$	Ua	$\mathrm{Qa}, \mathrm{Qb}, \mathrm{Qc}, \mathrm{Qt}, \mathrm{Sa}, \mathrm{Sb}, \mathrm{Sc}, \mathrm{St}, \mathrm{PFa}, \mathrm{PFb}, \mathrm{PFc}, \mathrm{PF}, \mathrm{F}$ Three-phase three-line variable delivery items la, Ib, lc, Uab, Ubc, Uca, P, Q, S, PF, F
Poner clear	Enexyctr	No	Usedito clear meter enegy values
	Maxmuncr	No	Usedt ocear the uerrent maximum and minimum
	ponsoEcir	No	Used to clear sudden surges, dips, interruptions and other events

6. Communication

KPM75 power quality analyzer power meter provides MODBUS RU communication protocol, a start, 8 -bit data bits, $1 / 0$ parity bit Supported bayd
Factory default cates: $1200,2400,4800,9600,19200,34800 \mathrm{bps}$. Facto
bit.
RTU
mode format for each byte
The format of the data frame is as follows:

Supported function codes			
DEC	HEX	definition	Operation description
01	0×01	Read relay output	Read one or more relay outputs
02	0x02	Read switch input	Read one or more switch input
03	0x03	Read register data	Read the value of one or more registers
05	0x05	Wite a single relay output	Control al lit he way to lo lose or disconnect the ereay
16	0x10	Write multiple	Write multiple register data at a

address	parameter		Range ofvalues			ctity	$\underbrace{\text { attributes }}_{\text {Read and write }}$								
0000			=ON,O=OFF			Bit	RW								
001H	$\begin{aligned} & \hline \text { Relay2 (DO2) } \\ & \hline \text { Relay3 (DO3) } \\ & \hline \end{aligned}$						RN								
0002H			Bit		RW										
0003H	Relay4 (DO4)					1=ON,0=OFF			Bit	RW					
6.1.1 Read relay output status (function code 01H) Request data frame: Read the status of Relay1.															
Addr	Fun		$\begin{array}{\|l\|l\|} \hline \text { Siart } \\ \text { Reg } \\ \hline \text { Rog } \\ \hline 00 \mathrm{H} \\ \hline \end{array}$			$\begin{aligned} & \text { Reg } \\ & \text { Nem } \\ & \text { Nom } \\ & \hline 02 \mathrm{tan} \end{aligned}$	$\underset{\substack{\text { CRC1 } \\ 6 \mathrm{hi}}}{\text { chen }}$	${ }_{\substack{\text { crcle } \\ 10}}^{\text {CRO }}$							
01H	01 H					xxH									
Response Data Frame: The slave responds to the host's data frame. Contains slave address,function code, number of data byte,relay status data, and CRC check.Each relay in the data packet occupies one bit ($1=\mathrm{ON}, 0=\mathrm{OFF}$). The first bit of the first byte is the lowest byte of the first byte. Address the relay state value, the rest of the order to the high order, useless bits filled with 0 . Read the contents of the digital output status response example.															
Addr	Fun		Byte count	Data		CRC16 hi		CRC1610							
01H	01H		01H	03		11H		89H							
Data byte content (Relay 1kRelay is closed)															
Bit7	Bit 6	6 Bit 5	Bit 4		Bit 3	Bit 2	Bit 1	Bit 0							
0	0	- 0	0		0	0	1	1							

6.5 Other parameters

For reading of other parameters, please refer to<KPM75 powe protocol_V1.0>
7. Common malfunction Analysis

$$
\begin{aligned}
& \text { Nothing is displayed after the unit is powered on } \\
& \text { - Check that the supoly voltage and other wiring are cor }
\end{aligned}
$$

 that the supply voltage should be within the operating range The device is not working properly after power reb -Turn off the device and the host computer and then rebo > Voltage or current readings incorrect mode

- Check whether the voltage transformer (PT), current transformer (CT)ratio is set correctly
-Check that GND is properly grounded
-Check that the shield is grounded
- Check
> The power or power factor reading is incorrect, but the voltage and current readings are correct
- Comparison of the actual input voltage and current wiring and wiring diagram, to check whether the correct phase relationship - RS-485 communication is not normal
- Check whether the communication baud rate, ID and communication protocol settings of the host computer ar consistent with the meter
- Please check the data bits, stop bits, parity settings and the - Check that the RS -232RS

Check - Check whether the problem entire communications network lines (shortcircuit, open circuit, grounding, shielding in a single properly grounded, etc.

- Turn off the device and the host computer, and then reboo - The communication line length is recommended to connect the communication line the communication line
Note: If there are some uns
Note:: fthere are some unsolved problems,
company's after-sales service department

8. Contact

Henan Compere Smart Technology CO., LTD.
Telephone: $+86-371-86181681$
Fax: $+86-371-67890037$
Fax:+86-371-67890037
Web:whw.compere.com/en/home
Address.No.
The final interpretation of this manual is owned by Hena Compere Smart Technology CO., LTD.

