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ARTICLE

A social interaction model with both in-group and out-group effects
Wenyu Zhou

International Business School, Zhejiang University, Haining, Zhejiang Province, China

ABSTRACT
This paper studies social interaction models with both in-group and out-group effects. The in- 
group effect follows the standard setup in the literature, while the out-group effect is introduced 
by assuming the economic outcome also depends on its out-group average value. We present a 
network game with limited information of outside groups that rationalizes the econometric model. 
We show that both effects are identified under a set of mild regularity conditions. We propose to 
estimate the model using the two-stage least squares (2SLS) method and establish the asymptotic 
normality of the estimators. The finite sample performance of the estimators is investigated 
through Monte Carlo simulations.
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I. Introduction

Ever since the seminal work of Manski (1993), 
social interaction models have attracted consider
able attention from both theoretical and empirical 
sides; see Jackson, Rogers, and Zenou (2017) and 
Kline and Tamer (2020) for a comprehensive 
review. The key feature of such models is that the 
economic outcome of interest is not only deter
mined by one’s own characteristics but also by his 
peers. For example, students’ academic achieve
ment, measured by GPA, is also affected by their 
friends’ performance (Lin (2010)).

Motivated by the fact that many real-world 
networks can be further decomposed into sub- 
groups, a large amount of literature has focused 
on social interaction models with group struc
tures; see Lee (2007), Liu and Lee (2010) and 
Bramoullé, Djebbari, and Fortin (2009), among 
many others. All these studies assume that 
individuals can only be affected by their 
within-group friends. Such setting, however, 
can be restrictive in reality because potential 
group-level interaction effects are completely 
ignored. We illustrate this point using the 
same example of students’ academic achieve
ment. Suppose that all students in some city 
form a network. This single network can be 
further decomposed by treating each school as 

a group. It is likely that a student’s GPA may 
not only be affected by students in his school 
but also by the average academic performance 
of students in other schools if all students need 
to compete together, such as taking the city- 
level high school entrance examination.

In this paper, we regard the social interaction 
effect induced by individuals outside the group 
as the out-group social interaction effect. To 
introduce such effect into the classic social inter
action models, we assume that one’s economic 
outcome depends not only on his friends’ eco
nomic outcomes but also the average value of 
other groups. This setting is motivated by the 
observation that one may not know the situation 
of other groups as well as of his own group. For 
example, it is likely that students have more 
information of the academic achievement of his 
peers in the same school than in other schools.

We show that both the in-group social interac
tion effect and the out-group social interaction effect 
are identified under a set of assumptions that have 
been made in previous studies (Bramoullé, 
Djebbari, and Fortin 2009). To estimate the para
meters of interest, we adopt the two-stage least 
squares estimation method developed in Kelejian 
and Prucha (1998) and establish the asymptotic 
normality of the estimators. We investigate the 
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finite sample performance of the 2SLS estimators 
through Monte Carlo simulations, which show 
they performs very well.

Our paper contributes to the literature of social 
interaction models by first introducing the out- 
group social interaction effect. It is noteworthy 
that ignoring the out-group social interaction effect 
may lead to a significant bias of the in-group social 
interaction effect because these two effects are often 
positively correlated in practice. We illustrate this 
observation based on numerical experiments in 
Section 4. With the model and the asymptotic 
results developed in this paper, one can conveni
ently test whether the in-group social interaction 
effect alone is enough to capture all the interaction 
effects in real-world network data sets, making our 
model an appealing choice for empirical studies.

The rest of the paper is organized as follows: 
Section 2 presents the econometric model and a 
network game as its microfoundation. Section 3 
studies the identification and the 2SLS estimation 
of the model. Section 4 investigates the finite sam
ple performance of the proposed estimators 
through Monte Carlo simulations. Section 5 con
cludes. The online appendix offers proofs.

Notations. For any real vector or matrix A, we 
use AT to denote the transpose of A and A� 1 to 
denote its inverse. We use Aij to denote the ijth 
element of a matrix A. For two positive integers a 
and b, we let 0a�b denote the a� b matrix consists 
of zeros and 1a denote the a-dimensional unit 
vector. For a sequence of random variables Xn, we 

let plimn!1Xn denote its probability limit, � !
p 

and � !d denote convergence in probability and in 
distribution, respectively.

II. Setup

The model

Suppose we have data of a single network which 
consists of n individuals and K groups. We let 
Gk denote the kth group. In the group Gk, 

k ¼ 1; . . . ;K, there are nk individuals, so 
n ¼ n1 þ � � � þ nk. The corresponding nk � nk 
adjacency matrices Wk are observed.1 Without 
loss of generality, we let G1 ¼

f1; . . . ; n1g; . . . ;GK ¼ f
PK� 1

k¼1 nk þ 1; . . . ;
PK

k¼1 nkg

denote the group structure and we use GðiÞ to 
represent the individual i‘s group for 
i ¼ 1; . . . ; n. Following the literature (e.g.Lee 
2007; Bramoullé, Djebbari, and Fortin 2009), 
we assume that links only exist within groups. 
The social interaction model with both in-group 
and out-group effects is given by: 

yi ¼ λ1
X

j2GðiÞ
WGðiÞ;ijyj þ λ2�y� GðiÞ þ xT

i βþ 2i; (1) 

where yi is the outcome variable of interest, 
xi is a p� 1 vector of nonstochastic individual- 
specific characteristics, �y� GðiÞ is the average 
value of the economic outcome outside the 
group GðiÞ, i.e. �y� GðiÞ ¼ 1=ðn � nGðiÞÞ

P
j‚GðiÞ yj, 

WGðiÞ;ij is the ijth element of the adjacency 
matrix of the group GðiÞ, and 2i is the error 
term.2 Our econometric target is to estimate 
the in-group social interaction effect λ1 2 R as 
well as the out-group social interaction 
effect λ2 2 R .3

To facilitate our discussion, we rewrite Equation 
(1) in its equivalent matrix form: 

Y ¼ λ1W1Yþ λ2W2Yþ Xβþ 2; (2) 

where Y ¼ ðy1; . . . ; ynÞ
T, X ¼ ðx1; . . . ; xnÞ

T and 
the two adjacency matrices are given by 

W1 ¼

W1 0n1�n2 . . . 0n1�nK

0n2�n1 W2 . . . 0n2�nK

..

. ..
. . .

. ..
.

0nK�n1 0nK�n2 . . . WK

2

6
6
6
4

3

7
7
7
5
2 R n�n;

and 

1A n� n adjacency matrix W is defined as follows. If i and j are connected, then Wij ¼ 1, otherwise Wij ¼ 0.
2It is a convention in the literature of social interaction models to assume that the individual characteristics X are nonstochastic; seeLee (2004) andLee (2007), 

among many others.
3In the example of student’s academic achievement, yi will be student i‘s GPA, xi will be a vector of exogenous variables that may affect student’s academic 

achievement, such as age and parents’ education. 
P

j2GðiÞ WGðiÞ;ij yj is the average GPA of student i‘s connected friends, and �y� GðiÞ is the average GPA outside 
student i‘s classroom.
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W2 ¼

0n1�n1
1

n� n1
1n1 1T

n2
. . . 1

n� n1
1n1 1T

nK
1

n� n2
1n2 1T

n1
0n2�n2 . . . 1

n� n2
1n2 1T

nK

..

. ..
. . .

. ..
.

1
n� nK

1nK 1T
n1

1
n� nK

1nK 1T
n2

. . . 0nK�nK

2

6
6
6
6
4

3

7
7
7
7
5

2 R n�n;

where 0m�n denotes a m� n matrix of zeros, and 
1m denotes a m� 1 vector of ones. It is noteworthy 
that W1 and W2 are two n� n adjacency matrices 
that correspond to the in-group and out-group 
social interaction effects, respectively. 

Remark 1: If λ2 ¼ 0, then Equation (1) becomes a 
simplified version of the models studied in 
Bramoullé, Djebbari, and Fortin (2009) andLee 
(2007). The main difference is that we do not 
include group-specific fixed effects here for the 
sake of simplicity.4

The microfoundation

In this subsection, we present a network game with 
limited information of outside groups as a micro
foundation for Equation (1) following the literature 
(Bramoullé et al. 2007). Consider a network game 
in which each individual maximizes his utility by 
setting the optimal level of yi. We assume that any 
individual i has full information of other indivi
duals in his group but only knows the average value 
of the economic outcome outside his group, i.e. 
F i ¼ fπi;WGðiÞ;YGðiÞ;XGðiÞ;�y� GðiÞg, where πi is 
the individual-specific heterogeneity in marginal 
return of yi, YGðiÞ is a nGðiÞ-dimensional vector of 
economic outcomes of the group GðiÞ and XGðiÞ is 
defined in the similar fashion. Each individual i is 
supposed to have the following utility function: 

uiðyi;F iÞ ¼ ðπi þ λ1
X

j2GðiÞ
WGðiÞ;ij

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

yj þ λ2�y� GðiÞÞyibenefit �
1
2

y2
i

|{z}
cost

; (3) 

where the term ðπi þ λ1
P

j2GðiÞ
WGðiÞ

ij yj þ λ2�y� GðiÞÞ

measures the marginal return of yi. It is noteworthy 
that individual’s marginal return now depends not 
only on his in-group friends but also the average 
value of the economic variable outside his group. 
From the first order condition, the individual i‘s 
best response function is given by 

yi ¼ πi þ λ1
X

j2GðiÞ
WGðiÞ;ijyj þ λ2�y� GðiÞ: (4) 

If we let πi ¼ xT
i βþ 2i, the best response func

tion (4) becomes the econometric model (1). We 
next characterize the unique interior Nash equili
brium of the network game defined above. 

Assumption 1. The adjacency matrix Wk is row- 
normalized with Wk;ij � 0, Wk;ii ¼ 0 for k ¼
1; . . . ;K and 1 � i � j � nk.

Assumption 2. jλ1j þ jλ2j< 1.

Assumption 1 is standard in the literature of 
social interaction models (e.g.Lee 2004; 
Bramoullé, Djebbari, and Fortin 2009; Liu and 
Lee 2010). Assumption 1 requires that the 
group-specific adjacency matrices to be row- 
normalized and individuals do not link to them
selves. Assumption 2 restricts the sum of the 
absolute values of the in-group and out-group 
social interaction effects, which ensures the 
Nash equilibrium of the network game is 
unique. 

Proposition 1. If Assumptions 1 and 2 hold, the 
matrix ðI � λ1W1 � λ2W2Þ is invertible and the 
network game with payoff function (3) has a 
unique interior Nash equilibrium in pure 
strategies: 

Y ¼ ðI � λ1W1 � λ2W2Þ
� 1

�;

where � ¼ ðπ1; . . . ; πnÞ
T.

Proof: See the online appendix.

4The identification results can be derived similarly for models with fixed effects but estimation procedure would be much more complicated; see Lee (2007) for 
more details. We leave Equation (1) with group-specific fixed effects as a future research direction.
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III. Identification and estimation

Identification

In this subsection, we show that the parameters in 
Equation (1) are identified under a set of mild 
assumptions. Let θ ¼ ðλ1; λ2; βTÞ

T denote the vec
tor of true parameters. 

Assumption 3. βi�0 for all i ¼ 1; . . . ; p.

Assumption 4. For i ¼ 1; . . . ; n, 2i is i.i.d distrib
uted with E½2i� ¼ 0 and Varð2iÞ ¼ σ2

2 <1.

Assumption 3 ensures that all individual char
acteristics can be used as valid instrumental 
variables. Assumption 4 requires that the error 
terms are i.i.d. Both assumptions have been 
made in most previous studies (Kline and 
Tamer 2020). The next proposition establishes 
the identifiability of the parameters. 

Proposition 2. If Assumptions 1, 2, 3 and 4 hold, the 
parameters of interest θ ¼ ðλ1; λ2; βTÞ

T are 
identified.

Proof: See the online appendix.

Estimation

We next discuss the estimation of Equation (1). 
Given the fact that the OLS estimators are incon
sistent because of the famous reflection problem 
(Manski 1993), we propose to estimate the para
meters using the 2SLS method developed in 
Kelejian and Prucha (1998). Let Z ¼
ðW1Y;W2Y;XÞ denote the design matrix of 
Equation (2) and H denote the matrix of instru
mental variables, for example, 
H ¼ ðW1X;W2X;XÞ. The 2SLS estimators are 
then given by: 

θ2SLS ¼ ðZTPHZÞ� 1ZTPHY; (5) 

where PH ¼ HðHTHÞ� 1HT. Next, we establish 
the asymptotic properties of the proposed 2SLS 
estimators. 

Assumption 5. There exists a generic positive con
stant c and sk such that lim

n!1
nk
n ¼ sk > c for all 

k ¼ 1; . . . ;K.

Assumption 6. The column sums of the group-spe
cific adjacency matrices Wk, k ¼ 1; . . . ;K are 
bounded uniformly.

Assumption 7. The nonstochastic matrix X have 
full column rank and its elements are bounded in 
absolute values uniformly.

Assumption 8. The matrix of instrumental vari
ables H has full column rank k � pþ 2 for all n 
large enough. In addition, H consists of a subset of 
the linearly independent columns of 
ðX;W1X;W2X;W1W1X;W2W2X . . .Þ, where the 
subset contains at least the linearly independent 
columns of ðX;W1X;W2XÞ.

Assumption 9. QHH ¼ limn!1 n� 1H0H exists and 
is finite and nonsingular. Furthermore, QHZ ¼

plimn!1n� 1H0Z exists and is finite and has full 
column rank.

Assumption 5 requires that each group contains 
a substantial number of individuals, which is rea
sonable for most empirical applications. 
Furthermore, this condition together with 
Assumption 6 ensure that the matrices W1 and 
W2 have uniformly bounded row and column 
sums. Assumptions 5–9 are standard in the litera
ture of social interaction models, e.g. Kelejian and 
Prucha (1998) and Liu and Saraiva (2015). It is 
noteworthy that the matrix of instrumental vari
ables H is exogenous in nature as X is nonstochas
tic by assumption. The asymptotic distribution of 
the 2SLS estimators are given in Proposition 3. 

Proposition 3. If the data are generated by 
Equation (1) and Assumptions 1–9 hold, then 

ffiffiffi
n
p
ðθ2SLS � θÞ � !d Nð0; ½QT

HZQ� 1
HHQHZ�

� 1
Þ:

Notice that QHZ and QHH can be calculated 
directly using observed data, so it is straightforward 
to conduct statistical inference on λ1 and λ2 with 
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the help of general t tests. It is noteworthy that a 
potential threat to the 2SLS estimation is the weak 
instruments problem (Staiger and Stock (1997)). 
To the best of our acknowledge, there is only lim
ited research on the weak instruments problem in 
the context of social interaction models.5 In fact, 
the weak instruments problem may even be more 
complicated in the current setting as both in-group 
and out-group effects are included. Therefore, we 
leave it as a promising direction for future research.

IV. Monte Carlo simulations

To investigate the finite sample performance of the 
proposed estimators, we conduct Monte Carlo 
simulations based on the following specification: 

yi ¼ λ1
X

j2GðiÞ
WGðiÞ;ijyj þ λ2�y� GðiÞ þ xi1β1 þ xi2β2

þ 2i:

(6) 

We consider two sets of parameters, which 
represent cases of weak out-group effect and strong 
out-group effect, respectively: (1) λ1 ¼ 0:60, λ2 ¼

0:20 and β1 ¼ β2 ¼ 1; (2) λ1 ¼ 0:20, λ2 ¼ 0:60 and 
β1 ¼ β2 ¼ 1. The individual characteristics xi1 and 
xi2 are drawn from independent Nð0; 2Þ distribu
tions and the error term 2i is drawn from standard 
normal distributions. When implementing the 
2SLS method, we let H ¼ ðX;W1X;W2XÞ. We fix 
the group size to be 50 and consider three different 
settings: n ¼ 100; 200; 400, which consist of 2; 4; 8 
groups, respectively. The group-specific adjacency 
matrices Wk are constructed following the specifi
cation in Liu and Lee (2010): for the ith row of Wk 
(i ¼ 1; . . . ; 50), we draw a integer mki randomly 
from the set of integers ½0; 1; 2; 3; 4�. If iþ
mki < 50 we set the ðiþ 1Þth, . . . , ðiþmkiÞth ele
ments of the ith row of Wk to be ones and the rest 
elements in that row to be zeros. Otherwise, the 
entries of ones will be wrapped around such that 
the first ðmki � 50Þ entries of the ith row will be 
ones. In the case of mki ¼ 0, the ith row of Wk will 
have all zeros. We then normalize the matrix Wk by                       

its row sums. The number of repetitions in each 
experiment is 1000. The simulation results are 
reported in Table 1.

The simulation results in Table 1 show that 
the 2SLS estimation method works well for our 
model as both the bias and the standard error of 
the estimates are relatively small compared with 
their true values. We next investigate the esti
mation bias of the in-group social interaction 
effect if the out-group effect is ignored. In this 
case, we adopt the standard 2SLS estimation 
method in Kelejian and Prucha (1998) for esti
mation and take H ¼ ðX;W1X;W2

1XÞ as instru
mental variables. The estimation results are 
shown in Table 2.

The results in Table 2 indicate that ignoring 
the our-group social interaction effect will lead 
to substantiate estimation bias of the in-group 
social interaction effect. This problem is espe
cially severe when the out-group effect is large 
(Case 2). In this sense, the model proposed in 
this paper can become an appealing choice for 
empiricists to deal with potential out-group 
social interaction effect in the data.

Table 1. Finite sample performance of the 2SLS estimators (1000 
draws).

n ¼ 100 n ¼ 200 n ¼ 400

Parameters Mean S.D. Mean S.D. Mean S.D.

Case 1
λ1 ¼ 0:6 0.5959 0.0362 0.6002 0.0331 0.5991 0.0098
λ2 ¼ 0:2 0.1876 0.0880 0.1956 0.1640 0.1892 0.1098
β1 ¼ 1 0.9927 0.0625 0.9993 0.0535 0.9997 0.0289
β2 ¼ 1 0.9958 0.0634 0.9991 0.0519 0.9994 0.0287
Case 2
λ1 ¼ 0:2 0.2003 0.0236 0.2002 0.0162 0.2011 0.0117
λ2 ¼ 0:6 0.6066 0.1309 0.6018 0.0898 0.6018 0.0865
β1 ¼ 1 1.0002 0.0544 1.0007 0.0364 0.9988 0.0242
β2 ¼ 1 0.9991 0.0538 0.9993 0.0368 1.0003 0.0250

Table 2. Simulation results of the mis-specified model (1000 
draws).

n ¼ 100 n ¼ 200 n ¼ 400

Parameters Mean S.D. Mean S.D. Mean S.D.

Case 1: λ2 ¼ 0:2
λ1 ¼ 0:6 0.5793 0.0688 0.5799 0.0401 0.5904 0.0207
β1 ¼ 1 0.9646 0.0941 0.9712 0.0596 0.9783 0.0375
β2 ¼ 1 0.9671 0.0920 0.9671 0.0609 0.9781 0.0392
Case 2: λ2 ¼ 0:6
λ1 ¼ 0:2 0.3645 0.0979 0.3206 0.0908 0.2845 0.0735
β1 ¼ 1 1.1067 0.1801 1.0765 0.1208 1.0574 0.0888
β2 ¼ 1 1.1082 0.1731 1.0714 0.1194 1.0565 0.0901

5The only reference we find is Tchuente (2019) who considers the identification and estimation of social interaction effect in the classic social interaction model, 
i.e. there only exists the in-group effect.
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V. Conclusion

In this paper, we study a new class of social inter
action models with both in-group and out-group 
effects. We provide a network game with limited 
information of outside groups, which rationalizes 
the econometric model. We show that the para
meters of interest are identified under a set of mild 
conditions. We propose to estimate the model 
using the 2SLS method developed in Kelejian and 
Prucha (1998) and establish the asymptotic proper
ties of the estimators. We investigate the finite 
sample properties of the 2SLS estimators through 
Monte Carlo simulations which show the estima
tion method performs very well.
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