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a b s t r a c t 

This study develops closed-form solutions for distortion risk measures (DRM) in extreme cases by uti- 

lizing the first two moments and the symmetry of underlying distributions. The resultant extreme-case 

distributions, encompassing the worst- and best-case distributions, are identified by the envelopes of the 

distortion functions. The findings of this study extend previous research on worst-case risk measures 

such as worst-case VaR, worst-case CVaR, worst-case RVaR, and worst-case spectral risk measure, by pre- 

senting a unified framework. Furthermore, the compact solutions enhance tractability in optimization 

problems involving these risk measures, particularly when the true underlying distribution is unknown, 

and the first two moments are uncertain. The application of the extreme-case DRMs is illustrated with 

real data sets through numerical examples. 
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. Introduction 

The tradeoff between risk and return is a fundamental issue 

n most practical decision-making situations under uncertainty. 

he commonly used downside risk measures regarding time and 

oney are usually based on the knowledge of probability distribu- 

ions of relevant random variables. For example, the value-at-risk 

hereafter, VaR) as the industry-standard reports the risk level of 

oss by computing an extremal quantile and its alternative condi- 

ional value at risk (hereafter, CVaR) provides the average loss ex- 

eeding an extremal quantile. All these risk measures require the 

pecific probability distributions of the corresponding random vari- 

bles. However, in practice, we may not have complete information 

bout the probability distribution of a particular random variable. 

nstead, the first two moments of the random variable may be esti- 

ated based on an actual data set. This fact motivates researchers 

o develop extreme case risk measures which require only the 

rst two moments information (we refer to Pichler & Xu, 2022; 

opescu, 2007 for more detailed discussions). The paper aims to 

erive some closed-form solutions for the more general extreme- 

ase risk measures when only the first two moments and sym- 

etry of the underlying distributions are known. Furthermore, an- 

ther critical issue in practice is that the data set for estimating the 

rst two moments can be prone to error or bias. Thus, we should 
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lso investigate the performance of the extreme-case risk measures 

nder moment uncertainty. Such an issue, called parametric am- 

iguity, is also addressed in this paper. The most famous exam- 

le using the industry-standard risk measures or their extreme- 

ase counterparts is the optimal portfolio selection problem. In a 

ortfolio optimization model, the risk measures are regarding the 

nvestment return and the decision variables are the investment 

eights on a set of investment opportunities (e.g., stocks). In fact, 

ther practical situations exist where the decision has to be made 

ased on limited or incomplete information about random fac- 

ors. For example, a manufacturer receives parts and components 

rom several suppliers. The lead times (from ordering to receiving) 

or these suppliers are random variables that are correlated. The 

robability distributions for these random variables are unknown 

nd their first two moments can be computed based on real data 

ets. If the on-time delivery time of some key parts is critical for 

ninterrupted supply-chain production, then determining the op- 

imal proportion of orders for each supplier under extreme-case 

isk measures is of interest to the manufacturer. While the first 

xample is about utilizing the extreme-case risk measures for the 

oney, the second is for the time. 

This paper attempts to derive the closed-form solutions for the 

xtreme-case distortion risk measures by solving the stochastic op- 

imization problems based on the partial information of the under- 

ying distributions. Specifically, such a problem can be formulated 

https://doi.org/10.1016/j.ejor.2023.05.025
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inf 
X 

or sup 

X 

M φ(X ) : = 

∫ 1 
0 F −1 

X 
(u ) d φ(u ) 

subject to X ∈ P, 

(1) 

here P is the class of random variables with given mean, vari- 

nce, and possibly other shape information, such as the symme- 

ry of the underlying distributions. Here F −1 
X 

is the general inverse 

istribution function of the random variable X and φ is the dis- 

ortion function that adjusts the true probability measure to give 

ew weights to risk events ( Wang, 20 0 0 ). Notably, the optimization

roblem (1) can be seen as a dual version of the utility optimiza- 

ion problem, i.e., minimize or maximize E [ u (X )] over a family P
f random variables, by viewing the distribution function as its in- 

erse ( Yaari, 1987 ); we refer to Popescu (2007) for more details. 

The optimization problem (1) is closely related to financial risk 

anagement since the objective function 

∫ 1 
0 F −1 (u ) d φ(u ) is gen- 

rally referred to as the distortion risk measure in the risk theory. 

isk measures are introduced in return-risk tradeoff analysis that 

ssigns real numbers to the loss distributions. Value-at-Risk, one 

f the most popular risk measures, determines the potential loss 

n the distributions being assessed at a given probability level. 

espite the popularity of VaR, it fails to be a coherent measure. 

onditional Value-at-Risk (also called Expected Shortfall), defined 

s the average of the tail distribution exceeding VaR, is a popular 

oherent risk measure and has attracted much attention in this 

rea ( Artzner et al., 1999 ). As a bridge between VaR and CVaR,

ange Value-at-Risk (RVaR) is first proposed by Cont et al. (2010) , 

hich is regarded as a robust risk measure in the sense that it is 

ontinuous with respect to weak convergence of random variables. 

pectral risk measures (hereafter, SRM) are more general coherent 

isk measures introduced by Acerbi (2002) , which models the risk 

version through weights given to the quantiles of different levels. 

t the top of the listed risk measures, distortion risk measures are 

ore general and are developed from the research on premium 

rinciples by Wang (1995) , which are accompanied by their as- 

ociated distortion functions. By choosing appropriate distortion 

unctions, distortion risk measures become some popular risk 

easures such as VaR, CVaR, RVaR, and SRM as special cases. 

The optimization problem (1) has been partially studied in the 

ptimization literature, and it is generally called the worst-case 

roblem. Ghaoui et al. (2003) consider the worst-case VaR prob- 

em when the first two moments of the underlying distributions 

re known and derive the closed-form solution to it. Chen et al. 

2011) and Natarajan et al. (2010) obtain the closed-form solutions 

or worst-case CVaR when the first two moments are known; also 

ee Toumazis & Kwon (2015) for using the worst-case CVaR in the 

roblem of transporting hazardous materials. Peposcu (2005) in- 

orporates the shape constraints such as symmetry and unimodal- 

ty into the stochastic programming problems in addition to the 

oment constraints on distribution functions. Li et al. (2017) stud- 

es the closed-form solutions for worst-case RVaR with the first 

wo moments and other shape information such as symmetry 

nd unimodality. More recently, Guo & Xu (2021) considers the 

orst-case law invariant coherent risk measure when the ambigu- 

us set is composed of robust spectral risk measures. Chen et al. 

2020) studies the moment problem in distribution-free robust op- 

imization, where the goal is to find a worst-case distribution that 

atisfies a given set of moments. Notably, the metrics in probabil- 

ty spaces describe another critical kind of worst-case risk measure 

roblem. Pichler (2014) studies the worst-case risk measure prob- 

em when the underlying distributions are provided by the Wasser- 

tein distance and the results turn out to be useful in pricing insur- 

nce contracts. Interested readers are referred to Pichler (2013) and 

ichler & Xu (2022) for more risk measure problems associated 

ith Wasserstein distance. For more related worst-case problems, 
1160 
ee Berkhouch (2021) ; Bertazzi & Secomandi (2020) ; Bertsimas 

t al. (2010) ; Das et al. (2021) ; Guo et al. (2022) ; Li (2018) ;

iesemann et al. (2014) ; Zymler et al. (2013) , and Natarajan et al. 

2008) . For more recent and relevant work on robust portfolio 

anagement, we refer to Chen et al. (2019) ; Sahamkhadam et al. 

2022) , and Staden et al. (2021) , among others. 

Motivated by the closed-form solutions for the worst-case risk 

easures reviewed above, it is natural to consider whether the 

losed-form solutions exist for the more general distortion risk 

easures that generalize and unify the existing results. In this pa- 

er, we give an affirmative answer to this question. It is worth 

oting that we approach the optimization problem in a unique 

ay. While most of the literature uses the standard optimization 

echniques to derive the results (see Popescu, 2007; Wiesemann 

t al., 2014; Zhu & Fukushima, 2009 ), our study is based on the 

auchy–Schwarz inequality combined with some calculus rules ap- 

lied strategically. The main contribution of this work is twofold: 

1) With the first two moments and symmetry of the underly- 

ing distributions, we derive the closed-form solutions for the 

extreme-case distortion risk measures and characterize their 

corresponding extreme-case distributions by the envelopes of 

the distortion functions. More importantly, the closed-form so- 

lutions generalize many well-known worst-case risk measures 

in a unified framework, including the worst-case VaR, worst- 

case CVaR, worst-case RVaR, and worst-case SRM. 

2) With closed-form solutions for the worst-case distortion risk 

measures, we further investigate the impact of the moment un- 

certainties on the robust optimization problem through an em- 

pirical study. 

The rest of the paper is structured as follows. The next sec- 

ion is focused on the main analytical results ( Theorems 2.1 and 

.2 ). Section 3 presents the numerical illustrations to demonstrate 

he application of the results. Finally, Section 4 concludes the pa- 

er with some remarks. Some of the lengthy technical proofs are 

elegated to the Appendices. 

. Main results 

Let (�, F , P ) be the probability space and assume that all ran-

om variables considered in the paper are in L 2 (�, F , P ) . De-

ote by F X (x ) the distribution function of random variable X , i.e., 

 X (t) = P (X ≤ t) , and denote by F −1 
X 

(α) = inf { x : F X (x ) ≥ α} the in-

erse distribution function of X for α ∈ [0 , 1] . Meanwhile, we de- 

ote by F −1+ (α) the right-continuous inverse distribution func- 

ion, i.e., F −1+ 
X 

(α) = inf { x : F X (x ) > α} . Note that the left- and right-

ontinuous inverse distribution function are identical except on 

ountable many points in [0,1]. Further, we let X > 0 represent- 

ng loss and X < 0 representing gain. For notation convenience, we 

ay alternatively denote by q (u ) the inverse distribution functions 

 

−1 
X 

(u ) or F −1+ 
X 

(u ) in the following development when there is no

mbiguity. Denote by ‖ f (u ) ‖ p the p-norm of f on the unit interval,

.e., ‖ f (u ) ‖ p = ( 
∫ 1 

0 | f (u ) | p du ) 
1 
p for p ≥ 1 . In particular, all integrals

re assumed to be finite from a practical point of view. Next we 

tart with the definition of distortion risk measure ( Wang, 20 0 0; 

aari, 1987 ). 

efinition 1 (Distortion risk measure) . The distortion risk measure 

s defined as 

 φ(X ) = −
∫ 0 

−∞ 

φ(F X (x )) dx + 

∫ + ∞ 

0 

1 − φ(F X (x )) dx, 

here φ refers to a distortion function belonging to the following 

et: 

 = { φ : [0 , 1] → [0 , 1] | φ is non-decreasing, continuous on 

 and 1, and φ(0) = 0 , φ(1) = 1 } . 
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Fig. 1. Three examples of distortion functions, the convex envelope functions, and the concave envelope functions. The left panel presents the distortion function of VaR α . 

The middle panel presents the distortion function of RVaR α,β . The right panel presents an S-shape distortion function. 
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n particular, we call φ(u ) = u for all u ∈ [0 , 1] as a trivial distortion

unction. 

Notably, any distortion risk measure can be written as a 

ebesgue–Stieltjes integral when its associated distortion function 

s left- or right-continuous (see Lemma B.1 in the appendices), and 

he Lebesgue–Stieltjes integral form plays a key role in the devel- 

pment of main results. 

efinition 2. A random variable X is symmetrical if there is a con- 

tant m such that P (X ≤ x ) = P (X ≥ 2 m − x ) for all x ∈ R . 

It is direct to see that F −1 
X 

(u ) + F −1+ 
X 

(1 − u ) = 2 E [ X] holds for

ll u ∈ (0 , 1) when the random variable X is symmetrical. In par-

icular, we see that F −1 
X 

(u ) + F −1 
X 

(1 − u ) = 2 E [ X] and F −1+ 
X 

(u ) +
 

−1+ 
X 

(1 − u ) = 2 E [ X] hold a.e. (almost everywhere) when u ∈ (0 , 1)

ince F −1+ 
X 

(u ) = F −1 (u ) a.e. for all u ∈ (0 , 1) . 

Typical examples for the symmetrical random variables include 

he normal, the uniform, and the student- t , etc. More notations are 

ntroduced here. For a given pair of mean and variance (μ, σ 2 ) ∈ 

 × R + , denote by P(μ, σ 2 ) the family of random variables with 

ean μ and variance σ 2 , and denote by P S (μ, σ 2 ) the family 

f symmetrical random variables with mean μ and variance σ 2 , 

amely 

P(μ, σ 2 ) = { X ∈ L 2 (�, F, P ) | E [ X ] = μ and Var [ X ] = σ 2 } , 
 P S (μ, σ 2 ) = { X ∈ L 2 (�, F, P ) | E [ X ] = μ, Var [ X ] = σ 2 , and X 

is symmetrical };
efinition 3. For a distortion function φ, the convex and concave 

nvelopes of φ are defined, respectively, by 

φ∗= sup { g : [0 , 1] → [0 , 1] | g(u ) ≤ φ(u ) for u ∈ [0 , 1] and g is convex } ,
∗= inf { g : [0 , 1] → [0 , 1] | g(u ) ≥ φ(u ) for u ∈ [0 , 1] and g is concave } .

Note that the convex and concave envelopes of a function φ
atisfy the relation (−φ) ∗ = −φ∗. Such a relation plays a key role 

n the following derivation of the closed-form solutions for the 

xtreme-case distortion risk measures ( Fig. 1 ). 

.1. DRM with convex distortion functions 

In this section, we develop the extreme-case DRM when the 

rst two moments as well as the symmetry of the underlying dis- 

ributions are known. We start with the univariate case and then 

xtend the results to the multivariate case. Coherent risk measures 

lay a crucial role in the modern risk theory. Indeed, DRM re- 

uces a coherent one if its associated distortion function is convex 

 Acerbi, 2002; Artzner et al., 1999 ). The following two propositions 
X

1161 
resent the closed-form solutions for worst-case DRMs with con- 

ex distortion functions. Similar to Peposcu (2005) ’s framework, 

he proposition also considers the symmetry of the underlying dis- 

ributions into account. 

It is obvious that M φ(X ) = E (X ) holds for all X when the dis-

ortion function φ is trivial, then we have sup X∈P(μ,σ 2 ) M φ(X ) = μ, 

nd the supremum can be attained at any X ∈ P(μ, σ 2 ) . Therefore,

t suffices to consider non-trivial distortion functions only in the 

ollowing proposition. 

roposition 2.1 (Worst-case convex DRM under. P(μ, σ 2 ) ) Let 

μ, σ 2 ) ∈ R × R 

+ and φ be a non-trivial convex distortion function, 

hen 

sup 

∈P(μ,σ 2 ) 

M φ(X ) = μ + σ‖ φ′ (u ) − 1 ‖ 2 , (2) 

here φ′ denotes the right derivative function of φ. Moreover, the 

upremum in (2) is attained if and only if the worst-case distribution 

 satisfies F −1 (u ) = μ + σ (φ′ (u ) − 1) / ‖ φ′ (u ) − 1 ‖ 2 a.e. 

roof. By changing of variables, X ∈ P(μ, σ 2 ) implies that 
 1 

0 

q (u ) d u = μ and 

∫ 1 

0 

(q (u ) − μ) 2 d u = σ 2 . (3)

It is obvious that φ is absolutely continuous since it is convex 

n [0,1], thus by Lemma B.1 we have M φ(X ) = 

∫ 1 
0 q (u )d φ(u ) where

 (u ) = F −1 (u ) , then 

 φ(X ) = 

∫ 1 

0 

q (u ) φ′ (u ) d u = μ + 

∫ 1 

0 

(
q (u ) − μ

)(
φ′ (u ) − 1 

)
d u. 

(4) 

pplying the Cauchy–Schwarz inequality to the right-hand side of 

q. (4) gives 

 φ(X ) ≤ μ + ‖ q (u ) − μ‖ 2 · ‖ φ′ (u ) − 1 ‖ 2 = μ + σ‖ φ′ (u ) − 1 ‖ 2 , 

(5) 

here the equality holds if and only if q (u ) − μ = k 1 (φ
′ (u ) −

) a.e. for some k 1 > 0 by the Cauchy–Schwarz inequality. By the 

ariance constraint in (3) and non-triviality of φ, we have k 1 = 

/ ‖ φ′ (u ) − 1 ‖ 2 , thus q (u ) = μ + σ ( φ′ ( u ) − 1 ) / ‖ φ′ (u ) − 1 ‖ 2 a.e . 

ow the function q (u ) is obviously increasing as φ′ (u ) is increas-

ng. Moreover, it also satisfies the mean and variance constraints 

n Eq. (3) , which is the optimal solution to the worst-case problem 

up X∈P(μ,σ 2 ) M φ(X ) . �

roposition 2.2 (Worst-case convex DRM under. P S (μ, σ 2 ) ) Let 

μ, σ 2 ) ∈ R × R 

+ and φ be a convex distortion function, then 

sup 

∈P S (μ,σ 2 ) 

M φ(X ) = μ + 

σ

2 

‖ φ′ (u ) − φ′ (1 − u ) ‖ 2 . (6)
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oreover, the supremum in (6) is attained if and only if the worst- 

ase distribution F satisfies 

 

−1 (u ) = μ + σ
φ′ (u ) − φ′ (1 − u ) 

‖ φ′ (u ) − φ′ (1 − u ) ‖ 2 

a.e., 

hen ‖ φ′ (u ) − φ′ (1 − u ) ‖ 2 
 = 0 . 

roof. It is direct that q (u ) + q (1 − u ) = 2 μ a.e. for all u ∈ (0 , 1)

hen X ∈ P S (μ, σ 2 ) , then similar with Proposition 2.1 we have 

 φ(X ) = 

∫ 1 

0 

q (u ) φ′ (u ) d u = 

∫ 1 

0 

q (1 − u ) φ′ (1 − u ) d u 

= 

∫ 1 

0 

(2 μ − q (u )) φ′ (1 − u ) d u = 2 μ −
∫ 1 

0 

q (u ) φ′ (1 − u ) d u. 

earranging the above equation gives 

 φ(X ) = μ + 

1 

2 

∫ 1 

0 

q (u ) 
(
φ′ (u ) − φ′ (1 − u ) 

)
d u = μ + 

1 

2 

∫ 1 

0 

(
q (u ) − μ

)(
φ′ (u ) − φ′ (1 − u ) 

)
d u. (7) 

pplying the Cauchy–Schwarz inequality to the right-hand side of 

q. (7) then yields 

 φ(X ) ≤ μ + 

1 

2 

‖ q (u ) − μ‖ 2 · ‖ φ′ (u ) − φ′ (1 − u ) ‖ 2 

= μ + 

σ

2 

‖ φ′ (u ) − φ′ (1 − u ) ‖ 2 , (8) 

here the equality holds if and only if q (u ) − μ = k 2 (φ
′ (u ) −

′ (1 − u )) a.e. for some k 2 > 0 by the Cauchy–Schwarz inequality. 

y the variance constraints in P S (μ, σ 2 ) together with ‖ φ′ (u ) −
′ (1 − u ) ‖ 2 
 = 0 , we have k 2 = σ/ ‖ φ′ (u ) − φ′ (1 − u ) ‖ 2 , therefore

 (u ) = μ + 

σ
2 ‖ φ′ (u ) − φ′ (1 − u ) ‖ 2 a.e. Now q (u ) is obviously in-

reasing as φ′ (u ) is increasing, and it also satisfies the mean, 

ariance, and symmetry constraints in P S (μ, σ 2 ) , which is ex- 

ctly the optimal solution to the worst-case optimization problem 

up X∈P S (μ,σ 2 ) M φ(X ) . �

emark 1. Note that when ‖ φ′ (u ) − φ′ (1 − u ) ‖ 2 = 0 , which is

quivalent to φ′ (u ) − φ′ (1 − u ) = 0 a.e. , we have M φ(X ) = E [ X] for

ll X by (7) . Thus sup X∈P S (μ,σ 2 ) M φ(X ) = μ, and the supremum can 

e attained at any X ∈ P S (μ, σ 2 ) . 

Different from the most literature on the worst-case problems, 

.g., Popescu (2007) ; Zhu & Fukushima (2009) , and Wiesemann 

t al. (2014) , which generally focus on the duality method, we 

olve the optimization problem simply by the well-known Cauchy–

chwarz inequality and some fundamental calculus techniques. 

The most notable feature of DRM with convex distortion func- 

ions is perhaps its connection with SRM. Recall that SRM is 

efined as ρg (X ) = 

∫ 1 
0 F −1 

X 
(u ) g(u ) d u , where g : [0 , 1] → [0 , 1] is

alled an “admissible risk spectrum” that is increasing and satisfies 
 1 
0 g(u ) d u = 1 . Applying Proposition 2.1 with the distortion func-

ion φ(t) = 

∫ t 
0 g(u ) d u , it is straightforward to obtain the results in

he following corollary. 

orollary 2.1 (Worst-case SRM under. P(μ, σ 2 ) and P S (μ, σ 2 ) ) 

he worst cases of SRM, S g (X ) = 

∫ 1 
0 F −1 (u ) g(u ) d u , are given by 

sup 

X∈P(μ,σ 2 ) 

S g (X ) = μ + σ‖ g(u ) − 1 ‖ 2 , 

sup 

∈P S (μ,σ 2 ) 

S g (X ) = μ + 

σ

2 

‖ g(u ) − g(1 − u ) ‖ 2 . 

oreover, the associated worst-case distributions can be obtained ex- 

licitly by the above two propositions. 

To the best of our knowledge, Li (2018) is the first study on the

orst-case SRM based on the first two moments and presents the 

losed-form solutions. Applying Proposition 2.1 with the distortion 
1162 
unction φ(t) = 

∫ t 
0 g(u ) d u , it is straightforward to see that the re-

ults in the above proposition are in agreement with Li (2018) . 

.2. DRM with general distortion functions 

In this section we proceed to study the extreme-case DRM with 

eneral distortion functions. For technical considerations, we re- 

trict the distortion functions to the following two families: 

 + = { φ ∈ D | φ is right-continuous and and φ′ 
∗ ∈ L 2 ((0 , 1)) } , 

 − = { φ ∈ D | φ is left-continuous and and φ′ 
∗ ∈ L 2 ((0 , 1)) } . 

Note that for a general distortion function φ ∈ D, the left limit 

s pointwise less than the right limit of φ, i.e., φ− ≤ φ ≤ φ+ , where 

−(u ) = lim v → u − φ(v ) and φ+ (u ) = lim v → u + φ(v ) for all u ∈ (0 , 1) .

hen by definition we have 

 φ+ (X ) ≤ M φ(X ) ≤ M φ− (X ) , for all φ ∈ D. (9) 

herefore, based on inequality (9) and without losing generality, 

e derive the worst-case DRM under left-continuous distortion 

unction, and derive the best-case DRM under right-continuous 

istortion function in the following development. 

heorem 2.1 (Extreme-case DRM under. P(μ, σ 2 ) ) Let (μ, σ 2 ) ∈ 

 × R + and φ be a distortion function with non-trivial envelope, then 

sup 

∈P(μ,σ 2 ) 

M φ(X ) = μ + σ‖ φ′ 
∗(u ) − 1 ‖ 2 , if φ ∈ D −, (10) 

inf 
∈P(μ,σ 2 ) 

M φ(X ) = μ − σ‖ φ∗′ 
(u ) − 1 ‖ 2 , if φ ∈ D + . (11) 

oreover, the supremum in (10) is attained if and only if the worst- 

ase distribution F satisfies 

 

−1 (u ) = μ + σ
φ′ 

∗(u ) − 1 

‖ φ′ ∗(u ) − 1 ‖ 2 

a.e., 

nd the infimum in (11) is attained if and only if the best-case distri- 

ution F satisfies 

 

−1 (u ) = μ − σ
φ∗′ 

(u ) − 1 

‖ φ∗′ 
(u ) − 1 ‖ 2 

a.e. 

roof. This proof will only focus on the worst-case DRM, since 

he best-case DRM can be directly obtained by the results of 

he worst case, noting the simple relationship M φ(X ) = −M ψ 

(−X ) , 

here ψ(u ) = 1 − φ(1 − u ) . Taking infimum on both sides yields

nf X M φ(X ) = − sup X M ψ 

(−X ) . Thus, it suffices for us to consider 

he worst case. Due to limited space, some preliminaries needed 

re provided in Appendix B such as Lemmas B.2, B.3, B.4 , and 

roposition B.1 , which are referred in the rest of this proof. 

For the distortion function φ ∈ D −, let { φn } n ≥1 ⊆ D − be any se-

uence of piecewise constant distortion functions satisfying 

n ≥ φ, n ≥ 1 , and lim 

n → + ∞ 

‖ φn − φ‖ ∞ 

= 0 . 

y results ( i ) and ( ii ) in Lemma B.3 , we obtain that (φn ) ∗(u ) ≥
∗(u ) and lim n → + ∞ 

(φn ) ∗(u ) = φ∗(u ) for all u ∈ [0 , 1] . Next we

rove that the following limit holds for all X ∈ P(μ, σ 2 ) , 

lim 

 → + ∞ 

M (φn ) ∗ (X ) = M φ∗ (X ) . (12) 

ndeed, for any s ∈ (0 , 1 2 ) we have ∣∣M (φn ) ∗ (X ) − M φ∗ (X ) 
∣∣ = 

∣∣∣ ∫ 1 

0 

q (u ) d 

(
(φn ) ∗(u ) − φ∗(u ) 

)∣∣∣∣∣∣ ∫ s 

0 

q (u ) 
(
(φn ) 

′ 
∗(u ) − φ′ 

∗(u ) 
)

d u 

∣∣∣+ 

∣∣∣ ∫ 1 −s 

s 

q (u ) d((φn ) ∗(u ) − φ∗(u )) 

∣∣∣
+ 

∣∣∣ ∫ 1 

1 −s 

q (u ) 
(
(φn ) 

′ 
∗(u ) − φ′ 

∗(u ) 
)

d u 

∣∣∣
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√ ∫ s 

0 

q 2 (u ) d u 

∫ s 

0 

(
(φn ) ′ ∗(u ) − φ′ ∗(u ) 

)2 
d u 

+ 

∣∣∣q (u ) 
(
(φn ) ∗(u ) − φ∗(u ) 

)| 1 −s 
s −

∫ 1 −s 

s 

(
(φn ) ∗(u ) − φ∗(u ) 

)
d q (u ) 

∣∣∣
+ 

√ ∫ 1 

1 −s 

q 2 (u )d u 

∫ 1 

1 −s 

(
(φn ) ′ ∗(u ) − φ′ ∗(u ) 

)2 
d u , (13) 

here the last inequality holds due to the Cauchy–Schwarz in- 

quality and integration by parts formula. 

Note that for any convex distortion function f , we always have 

f ′ (u ) ≤ f (1) − f (u ) 
1 −u ≤ 1 

1 −u . Applying it to (φn ) ∗ and φ∗ as both of 

hem are increasing and convex, we obtain that for any u ∈ [0 , s ] , 

 ≤ (φn ) 
′ 
∗(u ) ≤ 1 

1 − s 
and 0 ≤ φ′ 

∗(u ) ≤ 1 

1 − s 
. 

hus we have 
(
(φn ) ′ ∗(u ) − φ′ ∗(u ) 

)2 ≤ 1 / (1 − s ) 2 for all u ∈ [0 , s ] . In-

egrating both sides with respect to u then yields the following in- 

quality, 
 s 

0 

(
(φn ) 

′ 
∗(u ) − φ′ 

∗(u ) 
)2 

d u ≤ s 

(1 − s ) 2 
≤ 4 s. (14) 

n the other hand, it is direct to see that ∫ 1 

1 −s 

(
(φn ) 

′ 
∗(u ) − φ′ 

∗(u ) 
)2 

d u ≤
∫ 1 

1 −s 

((
(φn ) 

′ 
∗(u ) 

)2 

+ 

(
φ′ 

∗(u ) 
)2 )

d u ≤ 2 

∫ 1 

1 −s 

(
φ′ 

∗(u ) 
)2 

d u, (15) 

here the first inequality holds since both (φn ) 
′ ∗ and φ′ ∗ are non- 

egative, and the second inequality holds due to the fact that 

φn ) ∗(u ) ≥ φ∗(u ) for all n ≥ 1 and u ∈ [0 , 1] by Lemma B.4 . 

Since X ∈ L 2 (�, F , P ) and φ′ ∗ ∈ L 2 ([0 , 1]) , inequalities (14) and

15) indicate that for any arbitrary ε > 0 , there exists δ ∈ (0 , 1 2 )

uch that 
 ∫ δ

0 

q 2 (u )d u 

∫ δ

0 

(
(φn ) ′ ∗(u ) − φ′ ∗(u ) 

)2 
d u 

+ 

√ ∫ 1 

1 −δ
q 2 (u ) d u 

∫ 1 

1 −δ

(
(φn ) ′ ∗(u ) − φ′ ∗(u ) 

)2 
d u < 

ε

2 

. (16) 

For this specific δ and then by the convergence of (φn ) ∗, we 

ssert that there is a sufficient large N > 0 such that for all n ≥ N,

q (u ) 
(
(φn ) ∗(u ) − φ∗(u ) 

)∣∣1 −δ

δ
−
∫ 1 −δ

δ

(
(φn ) ∗(u ) − φ∗(u ) 

)
d q (u ) 

∣∣∣ < 

ε

2 
. 

(17) 

ndeed, for the first term in (17) we have 

q (u ) 
(
(φn ) ∗(u ) − φ∗(u ) 

)∣∣1 −δ

δ

∣∣∣ ≤ max { ∣∣q (δ) 
∣∣, ∣∣q (1 − δ) 

∣∣} 
×
(∣∣(φn ) ∗(1 − δ) − φ∗(1 − δ) 

∣∣+ 

∣∣(φn ) ∗(δ) − φ∗(δ) 
∣∣). 

etting n → + ∞ yields the conclusion that q (u ) 
(
(φn ) ∗(u ) −

∗(u ) 
)∣∣1 −δ

δ
→ 0 . For the second term in (17) we have ∫ 1 −δ

δ

(
(φn ) ∗(u ) − φ∗(u ) 

)
d q (u ) 

∣∣∣ ≤ ‖ (φn ) ∗ − φ∗‖ ∞ 

·
∣∣q (1 − δ) − q (δ) 

∣∣, 
hus by results (ii ) Lemma B.3 we obtain that 

im n → + ∞ 

∫ 1 −δ
δ

(
(φn ) ∗(u ) − φ∗(u ) 

)
d q (u ) = 0 . Therefore, by com-

ining the above two analyses we see that (17) holds. 

Substituting two inequalities (16) and (17) into inequality (13) , 

e obtain the limit in (12) , i.e., lim n → + ∞ 

M (φn ) ∗ (X ) = M φ∗ (X ) . 

Next we focus on the upper bound of the distortion risk mea- 

ure. Lemma B.2 indicates that M φn 
(X ) ≤ M φ(X ) ≤ M φ∗ (X ) since 
1163 
∗(u ) ≤ φ(u ) ≤ φn (u ) for u ∈ [0 , 1] . Taking supremum for the joint

nequality then yields 

sup 

∈P(μ,σ 2 ) 

M φn 
(X ) ≤ sup 

X∈P(μ,σ 2 ) 

M φ(X ) ≤ sup 

X∈P(μ,σ 2 ) 

M φ∗ (X ) . (18) 

On the other hand, by applying Propositions 2.1 and B.1 , we 

ave 

sup 

∈P(μ,σ 2 ) 

M φn 
(X ) = μ + σ‖ (φn ) 

′ 
∗(u ) − 1 ‖ 2 = sup 

X∈P(μ,σ 2 ) 

M (φn ) ∗ (X ) . 

(19) 

ence, it follows from (18), (19) that 

 (φn ) ∗ (X ∗) ≤ sup 
X∈P(μ,σ 2 ) 

M (φn ) ∗ (X ) = sup 
X∈P(μ,σ 2 ) 

M φn 
(X ) ≤ sup 

X∈P(μ,σ 2 ) 

M φ∗ (X ) , 

(20) 

here X ∗ is the worst-case random variable with respect to the 

easure M φ∗ (X ) , i.e., X ∗ satisfies M φ∗ (X ∗) = sup X∈P(μ,σ 2 ) M φ∗ (X ) 

see Proposition 2.1 for the existence). Finally, letting n → 

 in (20) and then applying (12) yields the conclusion that 

up X∈P(μ,σ 2 ) M φ(X ) = sup X∈P(μ,σ 2 ) M φ∗ (X ) , which completes the 

roof. �

As an interesting application, the distortion function is chosen 

o be the one that corresponds to symmetrical quantile average, 

hen the following result is obtained. 

roposition 2.3 (The distance between the symmetrical quantile 

verage and the mean) . Let (μ, σ 2 ) ∈ R × R + and α ∈ [ 1 2 , 1) , then

or any X ∈ P(μ, σ 2 ) we have 

F −1 (α) + F −1 (1 − α) 

2 

− μ
∣∣∣ ≤ σB (α) , (21) 

here 

 (α) = 

{√ 

α
4(2 α−1)(1 −α) 

− 1 , 2 
3 

≤ α < 1 , √ 

1 −α
α , 1 

2 
≤ α < 

2 
3 
. 

oreover, the bounds in (21) is sharpe due to the explicit results in 

heorem 2.1 . In particular when α = 

1 
2 , we obtain the maximal dis- 

ance between the median and mean of a random variable with fixed 

ean μ and variance σ 2 : 

F −1 ( 
1 

2 

) − μ
∣∣∣ ≤ σ, (22) 

howing that the maximal distance is at most its standard deviation. 

he equality holds in (22) when the random variable X with distribu- 

ion function F satisfies P (X = μ + σ ) = P (X = μ − σ ) = 

1 
2 . 

he proof of this proposition is provided in Appendix A . 

The extreme-case DRM for the symmetrical case is treated sim- 

larly and presented in the following theorem. 

heorem 2.2 (Extreme-case DRM under. P S (μ, σ 2 ) ) Let (μ, σ 2 ) ∈ 

 × R + and φ be a distortion function, then 

sup 

∈P S (μ,σ 2 ) 

M φ(X ) = μ + 

σ

2 

‖ φ′ 
∗(u ) − φ′ 

∗(1 − u ) ‖ 2 , if φ ∈ D −, 

(23) 

inf 
∈P S (μ,σ 2 ) 

M φ(X ) = μ − σ

2 

‖ φ∗′ (u ) − φ∗′ (1 − u ) ‖ 2 , if φ ∈ D + . 

(24) 

oreover, the supremum in (23) is attained if and only if the worst- 

ase distribution F satisfies 

 

−1 (u ) = μ + σ
φ′ 

∗(u ) − φ′ 
∗(1 − u ) 

‖ φ′ (u ) − φ′ (1 − u ) ‖ 2 

a.e. 

∗ ∗
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Fig. 2. The left panel presents two distortion functions: φ1 (u ) = �(�−1 (u ) + �−1 (α)) (Wang’s transform distortion function) and φ(u ) = ( 1 
1+ e −β(2 u −1) − 1 

1+ e β ) / ( 1 
1+ e −β − 1 

1+ e β ) 

(S-shaped distortion function), where α = 0 . 2 and β = 5 . The middle panel presents the worst-case quantile functions under the general constraints P(0 , 1) . The right panel 

presents the worst-case quantile functions under the symmetrical constraints P S (0 , 1) . 
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hen ‖ φ′ ∗(u ) − φ′ ∗(1 − u ) ‖ 2 
 = 0 , and the infimum in (24) is attained

f and only if the best-case distribution F satisfies 

 

−1 (u ) = μ − σ
φ∗′ (u ) − φ∗′ (1 − u ) 

‖ φ∗′ (u ) − φ∗′ (1 − u ) ‖ 2 

a.e. 

hen ‖ φ∗′ (u ) − φ∗′ (1 − u ) ‖ 2 
 = 0 . 

roof. The proof is similar to that for the Theorem 2.1 if the dis-

ortion function φ is replaced by its “symmetrical function” φ̄(u ) = 

φ(u ) + φ(1 − u )) / 2 (see the proof in Proposition B.1 in the Ap-

endix B). Thus, the detailed derivation is omitted. �

The two theorems above indicate that both worst-case and 

est-case distributions can be characterized explicitly by the con- 

ex and concave envelopes of the corresponding distortion func- 

ions, with a pair of location and scale parameters ( Fig. 2 ). 

The main difficulties in the proof for the worst case are to 

how that the worst-case DRM is equivalent to that with the 

onvex envelope of the corresponding distortion function, that 

s sup X M φ(X ) = sup X M φ∗ (X ) . To this end, we take three steps

o complete the proof. Firstly, we prove that it holds for con- 

ex distortion functions, i.e., Proposition 2.1 . Secondly, we prove 

hat it holds for piecewise constant distortion functions, i.e., 

roposition B.1 . Lastly, we prove that it holds for general distor- 

ion functions by approximation methods. The technical details of 

his three-step proof are provided in the Appendices. 

The optimal bounds and extreme-case distribution formulas 

n Theorems 2.1 and 2.2 are extremely powerful, as they in- 

lude many well-known worst-case risk measures as special cases. 

able 1 below summarizes these cases. 

emark 2. The worst-case VaR ( Ghaoui et al., 2003; Peposcu, 

005 ), worst-case CVaR ( Chen et al., 2011; Natarajan et al., 2010; 

hu & Fukushima, 2009 ), and worst-case RVaR ( Li et al., 2017 )

hen the first two moments of the underlying distributions are 

vailable have been well understood in literature. In particular, we 

nd that the worst-case values for these three risk measures are 

ll the same as μ + σ
√ 

α
1 −α (and μ + σ

√ 

1 
2(1 −α) 

for the symmet- 

ical case). However, there is no literature providing an explana- 

ion for such a result so far (i.e., why they are the same?). By 

sing the main results of this paper, we are able to explain such 

 phenomenon clearly by noting that these worst-case risk mea- 

ures have the same convex envelopes for their associated distor- 

ion functions. 

Obviously, the worst-case values subject to the constraint 

(μ, σ 2 ) are generally greater than that subject to the symmet- 

ical constraint P S (μ, σ 2 ) . Figure 3 illustrates the upper bounds 

or the VaR, the DRM with exponential utility, and the DRM with 
1164 
ower utility distortion function, subject to general and symmetri- 

al constraints numerically, respectively. 

.3. Some corollaries: multivariate case 

Theorem 2.1 can be easily extended to the multivariate case. 

orollary 2.2. Let (μi , σ
2 
i 
) ∈ R × R 

+ for i = 1 , 2 , . . . , n and φ be a

eneral distortion function, then 

1) sup 

X i ∈P(μi ,σ
2 
i 
) , i =1 , 2 , ... ,n 

M φ( 
∑ n 

i =1 X i ) = ∑ n 
i =1 sup 

X i ∈P(μi ,σ
2 
i 
) M φ∗ (X i ) . 

2) The equality in the above equation holds if (1) (X 1 , X 2 , . . . , X n ) are

comonotonic, i,e., there exists a uniform [0,1] random variable U

such that X i = F −1 
X i 

(U) . 

roof. Since φ∗(u ) ≤ φ(u ) for any u ∈ [0 , 1] , Lemma B.2 implies

hat 

sup 

 i ∈P(μi ,σ
2 
i 
) , i =1 , 2 , ... ,n 

M φ

( 

n ∑ 

i =1 

X i 

) 

≤ sup 

X i ∈P(μi ,σ
2 
i 
) , i =1 , 2 , ... ,n 

M φ∗

( 

n ∑ 

i =1 

X i 

) 

. 

(25) 

On the other hand, the distortion risk measure is sub-additive 

hen the distortion function is convex. Therefore, 

sup 

 i ∈P(μi ,σ
2 
i 
) , i =1 , 2 , ... ,n 

M φ∗

( 

n ∑ 

i =1 

X i 

) 

≤
n ∑ 

i =1 

sup 

X i ∈P(μi ,σ
2 
i 
) 

M φ∗ (X i ) , (26) 

here the equality holds if (X 1 , X 2 , . . . , X n ) are comonotonic. The

roof is the completed by combining two inequalities (25) and 

26) . �

The above corollary does not take the dependence constraint 

mong the random variables into account. Generally, the closed- 

orm solutions for the worst-case DRM may be unavailable if con- 

traints on the dependence are additionally proposed. However, in 

ome special case with mild conditions, the closed-form solutions 

re still available. 

efinition 4. For a mean vector μ ∈ R 

n and a positive semidefinite 

atrix � ∈ R 

n ×n , the family of random vectors with mean μ and 

ovariance � is defined as the set 

(μ, �) : = { X ∈ R 

n | E (X ) = μ and COV (X ) = �} , 
here COV (X ) = E (X − μ)(X − μ) � is the covariance. 

We consider sup X∈P(μ, �) M φ(w 

� X ) and inf X∈P(μ, �) M φ(w 

� X ) , 

here w ∈ R 

n denotes a constant vector w ∈ R 

n and X ∈ R 

n de-

otes a random vector. The following proposition is the multivari- 

te version of the Theorem 2.1 . 
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Fig. 3. Worst-case values and quantile functions of three distortion risk measures: value-at-risk (left), exponential utility distortion (middle), and power utility distortion 

(right). The top panels display the worst-case values for the general and symmetrical cases as a function the parameter in distortion functions (see Table 1 ); the bottom 

panels display the worst-case quantile functions for the general and symmetrical cases with preselected parameters. 

Table 1 

The table presents several special cases of DRMs, including well-known risk measures like VaR and CVaR. The worst and best cases for 

them are also reported in the last two columns. In particular for VaR α , CVaR α , and RVaR α,β , the assumption that α > 

1 
2 

makes sense since 

confidence level is always greater than 90% from a practical point of view. Of course one can also easily obtains the explicit results for 

other domains, for example, 0 ≤ α ≤ 1 
2 

. 

Risk measure Distortion function Constraint Best case Worst case 

VaR α 1 { u ≥α} , 1 
2 

< α < 1 P(μ, σ 2 ) μ − σ
√ 

1 −α
α μ + σ

√ 

α
1 −α

P S (μ, σ 2 ) μ − σ
√ 

1 −α
2 α2 μ + σ

√ 

1 
2(1 −α) 

CVaR α
u −α
1 −α 1 { u ≥α} , 1 

2 
< α < 1 P(μ, σ 2 ) μ μ + σ

√ 

α
1 −α

P S (μ, σ 2 ) μ μ + σ
√ 

1 
2(1 −α) 

RVaR α,β min { u −α
β−α

, 1 } 1 { u ≥α} , 1 
2 

< 

α < β < 1 

P(μ, σ 2 ) μ − σ
√ 

1 −β
β

μ + σ
√ 

α
1 −α

P S (μ, σ 2 ) μ − σ
√ 

1 −β
2 β2 μ + σ

√ 

1 
2(1 −α) 

Power Utility u α, α ≥ 1 P(μ, σ 2 ) μ μ + σ α−1 √ 
2 α−1 

P S (μ, σ 2 ) μ μ + 

σ
2 

√ 

2 α2 

2 α−1 
− 4 1 −αα

√ 
π�(1+ α) 

�( 1 2 + α) 

Exponential Utility e αu −1 
e α−1 

, α > 0 P(μ, σ 2 ) μ μ + σ
√ 

−1 + 

α
2 

e α+1 
e α−1 

P S (μ, σ 2 ) μ μ + 

σ
2 

√ 

α(e α−e −α−2 α) 
e α+ e −α−2 

Wang’s Transform �(�−1 (u ) −
�(α)) , α ∈ R 

P(μ, σ 2 ) μ μ + σ
√ 

e λ2 − 1 

P S (μ, σ 2 ) μ No analytical expression 

C

p

X

X

M

T

T  

P
i

orollary 2.3 (Multivariate case) . Let μ ∈ R 

n and � ∈ R 

n ×n be a 

ositive semidefinite matrix, then for any vector w ∈ R 

n , we have 

sup 

∈P(μ, �) 

M φ(w 

� X ) = μ� w + 

√ 

w 

� �w · ‖ φ′ 
∗(u ) − 1 ‖ 2 , (27) 

inf 
∈P(μ, �) 

M φ(w 

� X ) = μ� w −
√ 

w 

� �w · ‖ φ∗′ (u ) − 1 ‖ 2 . (28) 

(

1165
oreover, the worst-case distributions can be obtained analytically by 

heorem 2.1 and the projection method provided in Appendix C . 

The extreme-case values in the proposition follows from 

heorem 2.1 by observing the fact that X ∈ P(μ, �) yields w 

� X ∈
(μ� w, w 

� �w ) and the projection method. It is worthy mention- 

ng that we are not the first one to propose the projection method 

 Popescu, 2007; Yu et al., 2009 ). Instead, we propose another more 
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fficient Algorithm in Appendix C in which the closed-form solu- 

ions are available. 

The closed-form solutions in Corollary 2.3 provide a unified 

ramework for the extreme-case DRMs in multivariate cases. In 

articular, they generalize the popular worst-case VaR ( Ghaoui 

t al., 2003 ) and worst-case CVaR ( Chen et al., 2011; Natarajan 

t al., 2010 ) for multivariate cases. More importantly, the closed- 

orm solutions provide a greater tractability for the robust portfolio 

ptimization problem with any distortion risk measures. 

. Applications and numerical illustrations 

The extreme-case DRM is closely related to the robust portfolio 

ptimization problem in the portfolio management theory, which 

s one of the most popular applications of the worst-case DRM. 

herefore, we consider numerical examples with parametric ambi- 

uity based on real data sets to illustrate the application. Specifi- 

ally, if we denote the losses of n risky assets by a random vector

 = (X 1 , X 2 , . . . , X n ) , then the robust portfolio optimization prob-

em seeks a portfolio weight w = (w 1 , w 2 , . . . , w n ) that minimizes

he worst-case DRM, i.e., w = arg min 

w ∈W 

sup X∈P M φ(w 

� X ) , where W

s the set of admissible portfolio weights (e.g., w ≥ 0 if short selling 

s not allowed), and P is the uncertainty set. 

However, such a formulation only takes the risk into account. 

s suggested by Brandtner (2013, 2016) , we consider the trade- 

ff between risk and return instead of restricting to a limited 

isk analysis only. To this end, we reproduce a portfolio selection 

pproach which is well-established in the mean-variance frame- 

ork, i.e., (1 − λ) E (−X ) − λM φ(X ) , called the preference function, 

or λ ∈ [0 , 1] where −X represents the return. Obviously, such a 

unction represents a utility. However, this paper looks from the 

oss perspective, thus the opposite preference function is adopted 

n the following, namely πφ(X ) = λM φ(X ) + (1 − λ) E (X ) for λ ∈
0 , 1] , which will be minimized and may represent dis-utility. For- 

ally, a robust portfolio optimization problem in this paper seeks 

he portfolio weight w minimizing the worst-case risk πφ(w 

� X ) , 

 = arg min 

w ∈W 

sup 

X∈P 
πφ(w 

� X ) . (29) 

otably, the above πφ still belongs to the family of DRM since 

φ(w 

� X ) = M ψ 

(w 

� X ) with ψ(u ) = λφ(u ) + (1 − λ) u for all u ∈
0 , 1] . 

.1. Data, moment uncertainty, and feasible sets 

The sample mean and sample covariance of the assets loss are 

rone to errors due to imperfect sampling process, which indicates 

hat they may not be accurate. To this end, this paper considers 

he parameter ambiguity under the following box uncertainty: 

(μ−, μ+ ;�−, �+ ) = 

{
X ∈ R n : μ− ≤ E (X ) ≤ μ+ and �− ≤ COV (X ) ≤ �+ 

}
, 

(30) 

here μ− and μ+ are componentwise lower and upper bounds 

or E (X ) respectively; �− = { σXY −} XY and �+ = { σXY + } XY are com- 

onentwise lower and upper bounds for COV (X ) respectively. 

ince the component interval [�−, �+ ] may not contain a posi- 

ive semidefinite matrix, we also assume that there exists a posi- 

ive semidefinite �0 such that �− ≤ �0 ≤ �+ . 
To construct the box uncertainty set P(μ−, μ+ ;�−, �+ ) , we 

ake use of the “standard error” of estimators. Intuitively, the 

tandard error (SE) measures the average distance between the es- 

imator T (X ) and true values θ of parameters, thus it is reasonable 

o assume that | T (X ) − θ |≤ SE (T (X )) , or equivalently, 

 (X ) − SE (T (X )) ≤ θ ≤ T (X ) + SE (T (X )) , (31)

here SE (T (X )) denotes the standard error of T (X ) . 
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For the estimator of sample mean 

∑ n 
i =1 X i /n , the standard error 

s ˆ σX / 
√ 

n where ˆ σX is the sample standard deviation. For the sake 

f simplicity, we assume that X and Y are bivariate normal, thus 

he standard error of sample covariance is 
√ 

( ̂  σ 2 
X 

ˆ σ 2 
Y 

+ ˆ σ 2 
XY 

) / (n − 1) 

here ˆ σXY is the sample covariance between X and Y . Thus by 

31) , we obtain the bounds in uncertainty set (30) as 

− = ˆ μX − ˆ σX √ 

n 

, σXY − = ˆ σXY −
√ 

ˆ σ 2 
X 

ˆ σ 2 
Y 

+ ˆ σ 2 
XY 

n − 1 

; (32) 

+ = ˆ μX + 

ˆ σX √ 

n 

, σXY + = ˆ σXY + 

√ 

ˆ σ 2 
X 

ˆ σ 2 
Y 

+ ˆ σ 2 
XY 

n − 1 

, (33) 

here ˆ μX ( ̂  μY ) and ˆ σXY are sample mean and sample covariance, 

espectively. 

.2. GlueVaR 

To illustrate the application of DRM, an intermediate of two 

ost commonly used risk measures, VaR and CVaR, will be used 

n the numerical analysis for the sake of simplicity and flexibility. 

pecifically, we use a convex combination of VaR and CVaR with 

ifferent confidence levels as the DRM, i.e., 

 φ(X ) = ω VaR α(X ) + (1 − ω) CVaR β (X ) , (34)

here the weight ω ∈ [0 , 1] and 0 < α ≤ β < 1 . Such kind of risk

easures are also called the GuleVaR in actuarial science, which 

an incorporate more information about decision makers’ risk atti- 

udes and retain the advantages of sub-additivity ( Belles-Sampera 

t al., 2013; 2016 ). By assuming ω ≤ β−α
1 −α , the distortion function 

nd its corresponding convex envelope are given by 

φ(u ) = ω1 { α<u ≤β} + 

(1 − ω) u + ω − β

1 − β
1 { β<u ≤1 } , 

∗(u ) = 

ω(u − α) 

β − α
1 { α<u ≤β} + 

(1 − ω) u + ω − β

1 − β
1 { β<u ≤1 } , 

espectively. Thus it is straightforward to see that ψ ∗(u ) = 

φ∗(u ) + (1 − λ) u , and then the integral term in objective function

27) can be evaluated analytically as 
 1 

0 

(ψ 

′ 
∗(u ) − 1) 2 du = 

λ2 ((β − ω) 2 − α(β − ω(2 − ω))) 

(β − α)(1 − β) 
. 

The distortion function is crucial to the distortion risk measure. 

lueVaR is simply a mixture of two popular risk measures VaR 

nd CVaR. It is therefore natural to see that the mixture method 

s a direct approach to construct new distortion functions. In addi- 

ion to the mixture method, the composite method is another ap- 

roach. Specifically, if φ1 and φ2 are two distortion functions, then 

he composite function φ1 ◦ φ2 is also a distortion function by the 

omposite method. 

Below are two examples of the mixture and composite meth- 

ds, respectively. 

xample 3.1 (Inter-quantile measure and inter-RVaR-CVaR mea- 

ure) . For 0 < α < β < 1 , we let φ1 (u ) = 1 { α<u ≤1 } and φ2 (u ) =
 { β<u ≤1 } , u ∈ [0 , 1] . Define a new distortion function φ(u ) =
φ1 (u ) + (1 − c) φ2 (u ) for c ∈ [0 , 1] , then 

 φ(X ) = c VaR α(X ) + (1 − c) VaR β (X ) . 

n the other hand, we have φ∗(u ) = 

c(u −α) 
β−α

1 { α≤u<β} + 

(1 −c) u + c−β
1 −β

1 { β≤u ≤1 } when 0 ≤ c ≤ β−α
1 −α for all u ∈ [0 , 1] , then 

 φ∗ (X ) = c RVaR α,β (X ) + (1 − c) CVaR β (X ) . 

he distortion risk measure M φ is called an inter-quantile measure, 

nd M φ∗ is called an inter-RVaR-CVaR measure. 
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Table 2 

Bounds in box uncertainty set P(μ−, μ+ ;�−, �+ ) based on standard errors of estimators. Note that the data presented are all 

daily frequency measurements and are expressed as percentages. 

AAPL ALGN SBUX EBAY M 

(μ−, μ+ ) (%) (−0 . 2245 , 0 . 0644) (−0 . 1506 , 0 . 2262) (−0 . 0515 , 0 . 2320) (−0 . 0693 , 0 . 2112) (−0 . 0752 , 0 . 3473) 

( ̂ σXY−, ̂  σXY+ ) (%) AAPL ALGN SBUX EBAY M 

AAPL (0 . 0983 , 0 . 1116) (0.0418,0.0548) (0 . 0454 , 0 . 0556) (0 . 0506 , 0 . 0610) (0.0644,0.0795) 

ALGN (0.0418,0.0548) (0 . 1672 , 0 . 1898) (0 . 0509 , 0 . 0640) (0 . 0489 , 0 . 0617) (0.0746,0.0940) 

SBUX (0 . 0454 , 0 . 0556) (0.0509,0.0640) (0 . 0947 , 0 . 1074) (0 . 0533 , 0 . 0636) (0 . 0904 , 0 . 1064) 

EBAY (0 . 0506 , 0 . 0610) (0 . 0489 , 0 . 0617) (0 . 0533 , 0 . 0636) (0 . 0927 , 0 . 1052) (0 . 0680 , 0 . 0829) 

M (0.0644,0.0795) (0.0746,0.0940) (0 . 0904 , 0 . 1064) (0 . 0680 , 0 . 0829) (0 . 2103 , 0 . 2386) 
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Table 3 

Optimal portfolio weights based on model (29) with ω = 0 . 7 , α = 0 . 95 , β = 0 . 99 , 

and λ = 0 . 7 . Types “I” and “II” denote portfolios with short selling allowed and 

not allowed, respectively. 

AAPL ALGN SBUX EBAY M 

Optimal weight w 1 w 2 w 3 w 4 w 5 

Nominal porfolio (I) 0.4205 0.1385 0.3373 0.2476 −0.1438 

Nominal portfolio (II) 0.4695 0.1226 0.2071 0.2008 0.0000 

Robust portfolio (I) 0.4269 0.1257 0.3319 0.2495 −0.1340 

Robust portfolio (II) 0.4727 0.1102 0.2110 0.2061 0.0000 
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xample 3.2 (Distorted-CVaR) . Let φ1 (u ) = u β and φ2 (u ) = 

u −α
1 −α 1 { α≤u ≤1 } . Define a new distortion function φ(u ) = φ1 ◦ φ2 (u ) 

or 0 < α < 1 and β > 0 , u ∈ [0 , 1] , then 

 φ(X ) = 

β

(1 − α) β

∫ 1 

α
VaR u ( X ) · (u − α) β−1 d u. 

n particular, M φ∗ (X ) = M φ(X ) holds for all X ∈ P(μ, σ 2 ) when

≥ 1 . We call M φ as a distorted-CVaR. In particular, the distorted- 

VaR reduces to CVaR when β = 1 . 

Both of the above two examples can be used as alternatives in 

he numerical illustrations. 

.3. A short numerical example 

For the numerical analysis, we randomly select five companies 

n the U.S. stock market, which are Apple, Align Technology, Star- 

ucks, Ebay, and Macy’s, and the company codes are AAPL, ALGN, 

BUX, EBAY, and M, respectively. Then we collect a sample of his- 

orical daily close prices of them from Yahoo Finance over a pe- 

iod of 2 years from June 2007 to June 2009 with total 503 daily 

amples. Based on the sample mean and sample covariance of five 

tock daily losses (i.e., the negative stock returns), we compute the 

ounds (32) and (33) of uncertainty set P(μ−, μ+ ;�−, �+ ) and 

eport them in Table 2 . 

It is obvious that the optimization problem in (29) under the 

ox uncertainty can be formulated as 

inf 
w 

sup 

μ, �

μ� w + 

√ 

w 

� �w · ‖ ψ 

′ 
∗(u ) − 1 ‖ 2 , 

s.t. μ− ≤ μ ≤ μ+ , �− ≤ � ≤ �+ , � � 0 , w ∈ W,

(35) 

n which the inner “sup” part can be regarded as a semidefinite 

rogramming problem (SDP). 

With sample mean and sample covariance, we can compute 

 “nominal portfolio” by setting μ− = μ+ = ˆ μ and �− = �+ = 

ˆ �, 

gainst which we can compute a “robust portfolio” under box un- 

ertainty in Table 2 (see, e.g., Grant & Boyd, 2014 for the disci- 

lined convex programming toolbox). In particular, the admissible 

et W = { w : w ≥ 0 } can be proposed if short selling is not allowed.

Table 3 displays the optimal portfolio weights for both nom- 

nal and robust settings, with and without short selling, respec- 

ively. The study reveals several noteworthy findings. Firstly, the 

ecision maker will assume a short position in stock “M” if short 

elling is permitted, and will avoid taking any positions in this 

tock if short selling is prohibited. This behavior may be attributed 

o the fact that the objective function incorporates the return as- 

ect while stock “M” has the lowest return in this portfolio. Sec- 

ndly, both nominal and robust portfolio strategies assign the high- 

st weight to the stock with the lowest risk, namely stock “AAPL,”

nd the lowest weight to the stock with the highest risk, namely 
1167 
tock “M.” Thirdly, the differences between the results of the ro- 

ust and nominal portfolio strategies are relatively small, which 

ay be explained by the use of daily returns in this study. The 

se of daily return leads to a relatively limited box uncertainty set 

(μ−, μ+ ;�−, �+ ) since μ− is close to μ+ and �− is close to �+ 
s evidenced in Table 2 . 

. Conclusions 

In this paper, we have derived the closed-form solutions for 

he extreme DRMs (both worst-case and best-case) based on only 

he first two moments and symmetry of the underlying distribu- 

ions. In addition, we show that the corresponding extreme-case 

istributions can be characterized by the envelopes of the distor- 

ion function. These results are important from the perspectives of 

oth making theoretical contributions to the risk management lit- 

rature and promoting the applications based on extreme-case risk 

easures. In the first aspect, our results generalize several well- 

nown extreme-case risk measures with closed-form solutions by 

ushing the envelope. In the second aspect, with the closed-form 

olutions to the extreme-case DRM, we demonstrate that the ro- 

ust optimization procedure based on the extreme-case DRMs de- 

eloped in this paper can generate the optimal solutions for situ- 

tions where only the imperfect estimations for the first two mo- 

ents are available. Exploring more real-world applications of us- 

ng closed-form solutions for the extreme-case DRMs can be a fu- 

ure research topic. 
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ppendics 

In the section of appendices, we present the detailed proofs 

f the analytical results of this paper. We will take three steps 

o prove the main theorems. In the first step, we will prove that 
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Algorithm 1 The projection method. 

INPUT μ ∈ R 

n ×1 , ω ∈ R 

n ×1 , � ∈ R 

n ×n , φ(u ) 

1) �1 = ω 

� �ω; 

2) Substitute μ1 and �1 into Corollary 2.3 to generate the worst- 

case random variable X ∗; 

3) Use Gram–Schmidt othogonalization method to find n − 1 non- 

correlated { δ1 , δ2 , . . . , δn −1 } that are also non-correlated with 

X ∗. Moreover, let E (δi ) = 0 and Var (δi ) = 1 ; 

4) By orthogonal diagonalization, �1 = P · diag (λ1 , λ2 , . . . , λn ) · P � , 
where P is an orthogonal matrix; 

5) A 0 = P · diag ( 
√ 

λ1 , 
√ 

λ2 , . . . , 
√ 

λn ) ; 

6) Find n − 1 elements from { e 1 , e 2 , . . . , e n } , e.g., { e 2 , e 3 , . . . , e n } , 
such that { A 1 , e 2 , e 3 , . . . , e n } is linearly independent, where A 1 = 

((1 , 1 , . . . , 1) · A 0 ) 
� . 

7) { A 1 , e 2 , e 3 , . . . , e n } → { A 1 , ˜ e 2 , ˜ e 3 , . . . , ˜ e n } by Gram–Schmidt or- 

thogonalization. 

8) A = A 0 · (A 1 , ˜ e 2 , ˜ e 3 , . . . , ˜ e n ) . 

OUTPUT (X 1 , X 2 , . . . , X n ) = (X ∗, δ1 , δ2 , . . . , δn −1 ) · A 

� ·
diag ( 1 

ω 1 
, 1 

ω 2 
, . . . , 1 

ω n 
) + μ� 

B

L

φ
M

M

M
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heorems 2.1 and 2.2 hold for convex distortion functions, which is 

ust the Proposition 2.1 presented in the paper. In the second step, 

e will prove that these results hold for piecewise constant distor- 

ion functions, which is Proposition B.1 established in this section. 

inally, in step 3, we will prove that these results hold for general 

istortion functions by approximation methods. The entire proof 

rocess is successive in nature and is divided into two appendices. 

he first and third steps are presented in the main text of the pa-

er (see Propositions 2.1 and two theorems), and the second step 

s reported in Appendix B (see Proposition B.1 ). 

ppendix A. Proof of Proposition 2.3 

roof. Note that the distortion function φ(u ) associated with the 

ymmetrical quantile average M φ(X ) = ( F −1 (α) + F −1 (1 − α) ) / 2 

akes the following form: 

(u ) = 

{ 

0 , if 0 ≤ u < 1 − α, 
1 
2 
, if 1 − α ≤ u < α, 

1 , if α ≤ u ≤ 1 . 

hen the convex and concave envelopes for the distortion function 

(u ) when 

2 
3 ≤ α < 1 are 

φ∗(u ) = 

⎧ ⎨ ⎩ 

0 , if 0 ≤ u < 1 − α, 
u + α−1 

2(2 α−1) 
, if 1 − α ≤ u < α, 

u −2 α+1 
2(1 −α) 

, if α ≤ u ≤ 1 . 

and 

∗(u ) = 

⎧ ⎨ ⎩ 

u 
2(1 −α) 

, if 0 ≤ u < 1 − α, 
u +3 α−2 
2(2 α−1) 

, if 1 − α ≤ u < α, 

1 , if α ≤ u ≤ 1 , 

espectively; when 

1 
2 ≤ α < 

2 
3 , they are 

φ∗(u ) = 

{ 

0 , if 0 ≤ u < 1 − α, 
u + α−1 

α , if 1 − α ≤ u ≤ 1 , and 

∗(u ) = 

{
u 
α , if 0 ≤ u < α, 

1 , if α ≤ u ≤ 1 , 

espectively. 

By closed-form solutions in (10) and (11) we obtain that 

− σ

√ 

α

4(2 α − 1)(1 − α) 
− 1 ≤ M φ(X ) 

≤ μ + σ

√ 

α

4(2 α − 1)(1 − α) 
− 1 , 

2 

3 

≤ α < 1 , 

− σ

√ 

1 − α

α
≤ M φ(X ) ≤ μ + σ

√ 

1 − α

α
, 

1 

2 

≤ α < 

2 

3 

. 

Therefore, we obtain that 

F −1 (α) + F −1 (1 − α) 

2 

− μ
∣∣∣ ≤ σB (α) , (A.1) 

here 

 (α) = 

{√ 

α
4(2 α−1)(1 −α) 

− 1 , 2 
3 

≤ α < 1 , √ 

1 −α
α , 1 

2 
≤ α < 

2 
3 
. 

y letting α = 

1 
2 , the inequality (A.1) implies that 

∣∣∣F −1 ( 1 2 ) − μ
∣∣∣ ≤

, which completes the proof. �

ppendix B. Preliminaries and extensions 

To prove that the main results, we first present some prelimi- 

aries with three lemmas. 
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1. Some preliminaries 

emma B.1 ( Dhaene et al. (2012) ) . When the distortion function 

is right-continuous or left-continuous, the distortion risk measure 

 φ(X ) has the following Lebesgue–Stieltjes integral representation: 

 φ(X ) = 

∫ 1 

0 

F −1 
X (u )d φ(u ) , when φ is right-continuous; (B.1) 

 φ(X ) = 

∫ 1 

0 

F −1+ 
X (u )d φ(u ) , when φ is left-continuous. (B.2) 

n particular, 
∫ 1 

0 F −1 
X 

(u )d φ(u ) = 

∫ 1 
0 F −1+ 

X 
(u )d φ(u ) when φ is contin-

ous. 

emma B.2. Let f and g be two functions defined on [0,1] with 

f (0) = g(0) and f (1) = g(1) . If g(u ) ≥ f (u ) for u ∈ [0 , 1] , then

or any random variable whose quantile function q (u ) satisfies 
 1 
0 q (u ) d f (u ) < ∞ or 

∫ 1 
0 q (u ) d g(u ) > −∞ , we have 

∫ 1 
0 q (u ) d g(u ) ≤

 1 
0 q (u ) d f (u ) . 

roof. It is straightforward to see that ∫ 1 

0 

q (u ) d g(u ) −
∫ 1 

0 

q (u ) d f (u ) = 

∫ 1 

0 

q (u ) d(g(u ) − f (u )) 

= −
∫ 1 

0 

(g(u ) − f (u )) d q (u ) ≤ 0 , 

here the last inequality holds since q (u ) is increasing. �

Next lemma presents some properties of convex and concave 

nvelopes, which will be used in the proof of Proposition B.1, The- 

rems 2.1 , and 2.2 . More specifically, ( iii ), ( i v ), and ( v i ) will be used

n the proof of Proposition B.1 , as they describe the forms of the 

onvex or concave envelopes of piecewise constant functions. ( i ) 

nd ( ii ) together with Propositions 2.1 and B.1 will be used in the

roof of Theorems 2.1 and 2.2 . 

emma B.3. For convex and concave envelopes, we have following 

onclusions. 

(i) For f and g defined on [ a, b] with f ≤ g, we have f ∗ ≤ g ∗ and

f ∗ ≤ g ∗. 

(ii) For f and g defined on [ a, b] , if ‖ f − g‖ ∞ 

< ε for some ε > 0 ,

we have ‖ f ∗ − g ∗‖ ∞ 

< ε and ‖ f ∗ − g ∗‖ ∞ 

< ε. 
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(iii) If f defined on [ a, b] is an increasing function, then both f ∗ and

f ∗ are increasing functions. 

(iv) For f defined on [ a, b] , we have f ∗(a ) = f ∗(a ) = f (a ) and

f ∗(b) = f ∗(b) = f (b) . 

(v) Let f and g be two functions defined on [ a, b] and [ b, c] respec-

tively. Define 

h (x ) = f (x )1 { a ≤x<b} + g(x )1 { b≤x ≤c} , ˜ h (x ) = f ∗(x )1 { a ≤x<b} + g ∗(x )1 { b≤x ≤c} , 

where 1 A denotes the indicator function of set A . Then ̃  h ∗(x ) =
h ∗(x ) for all x ∈ [ a, b] . 

(vi) Let f be a piecewise constant function defined on [ a, b] , then 

both f ∗ and f ∗ are piecewise linear continuous on the interior 

of the domain. Moreover, all salient points of f ∗ and f ∗ are in 

the set of the discontinuous points of f . (For piecewise linear 

continuous function g defined on [ a, b] , x 0 ∈ (a, b) is called a

salient point of g if g ′ −(x 0 ) 
 = g ′ + (x 0 ) ) 

roof. We only prove the case for convex envelopes, since the 

roof for concave envelopes is similar. In particular, we will prove 

i ) , (iii ) , (i v ) , and (v ) by contradiction and prove (v i ) by induction.

(i ) Suppose there exists x 0 ∈ [ a, b] such that f ∗(x 0 ) > g ∗(x 0 ) .

efine a new function ̃

 g on [ a, b] as 

 

 (x ) = max { g ∗(x ) , f ∗(x ) } . (B.3)

ote that the maximum of any two convex functions is still con- 

ex, thus ̃  g is convex on [ a, b] . 

By (B.3) , we have following three direct conclusions: 

 

 (x ) ≤ max { g(x ) , f (x ) } = g(x ) , (B.4) 

 

 (x 0 ) = max { g ∗(x 0 ) , f ∗(x 0 ) } > g ∗(x 0 ) , (B.5) 

 

 (x ) ≥ g ∗(x ) ; (B.6) 

he Eq. (B.4) implies that the function 

˜ g is a convex function that 

s dominated by g. On the other hand, Eqs. (B.5) and (B.6) imply 

hat the convex function ̃

 g is strictly greater than the envelope of g. 

hus by definition of the convex envelope, a contradiction happens. 

he proof for the convex envelope is then completed. 

For two functions f and g satisfy f (x ) ≤ g(x ) , which is equiv- 

lent to that −g(x ) ≤ − f (x ) , we have (−g) ∗(x ) ≤ (− f ) ∗(x ) by

he above results (i), which further implies that −g ∗(x ) ≤ − f ∗(x ) ,

ence f ∗(x ) ≤ g ∗(x ) for all x ∈ [ a, b] , which completes the proof. 

(ii ) Note that ‖ f − g‖ ∞ 

< ε implies that f (x ) − ε < g(x ) <

f (x ) + ε for all x ∈ [ a, b] . Applying result (i) then yields 

f ∗(x ) − ε = ( f − ε) ∗(x ) ≤ g ∗(x ) ≤ ( f + ε) ∗(x ) = f ∗(x ) + ε

or all x ∈ [ a, b] , which follows that ‖ f ∗ − g ∗‖ ∞ 

< ε. 

(iii ) Suppose that f ∗ is not increasing, then there exist x 0 , x 1 ∈
 a, b] with x 0 < x 1 such that f ∗(x 0 ) > f ∗(x 1 ) . Noting that f ∗ is con-

ex, we obtain that 

f ∗(a ) − f ∗(x 1 ) 

a − x 1 
≤ f ∗(x 0 ) − f ∗(x 1 ) 

x 0 − x 1 
< 0 . 

hus f ∗(a ) > f ∗(x 1 ) since a − x 1 < 0 . Define a new function on

 a, b] as ˜ f (x ) = max { f ∗(x ) , f ∗(a ) } , which is a convex function since

he maximum of any two convex functions is also convex. Now it 

s straightforward to see that for all x ∈ [ a, b] , ˜ f (x ) ≤ max { f (x ) , f (a ) } ≤ f (x ) , (B.7) 

˜ f (x 1 ) = f ∗(a ) > f ∗(x 1 ) , (B.8) 

˜ f (x ) ≥ f ∗(x ) . (B.9) 
t
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imilar to the proof for the result (i), Eq. (B.7) implies that ˜ f is a

onvex function dominated by f . Equations (B.8) and (B.9) imply f̃ 

s a convex function strictly greater than f ∗, which contradicts to 

he definition of convex envelope. The proof is competed. 

(i v ) Suppose that f ∗(b) 
 = f (b) . Then by definition of the convex

nvelope, f ∗(b) < f (b) must hold. Define a function 

˜ f on [ a, b] as ˜ f (x ) = f ∗(x )1 { a ≤x<b} + f (b)1 { x = b} , 

hich is a convex function since f ∗ is convex and f ∗(b) < f (b) .

ow it is straightforward to see that ˜ f (x ) ≤ f (x ) , ˜ f (x ) ≥ f ∗(x ) , and 

˜ f (b) > f ∗(b) . 

hich leads to a contradiction since f ∗ is the convex envelope of 

f . 

Similarly, we can prove that f ∗(a ) = f (a ) . Therefore, the proof

s terminated here. 

(v ) By definition of the convex envelope, we have ˜ h (x ) ≤ h (x ) 

or all x ∈ [ a, b] . Applying the result in (i) gives 

 

 ∗(x ) ≤ h ∗(x ) , for all x ∈ [ a, b] . (B.10) 

ext we will prove the reverse direction of it by contradiction, i.e., 

e prove that 

 ∗(x ) ≤˜ h (x ) , for all x ∈ [ a, b] . (B.11) 

Suppose that there exists x 0 ∈ [ a, b] such that h ∗(x 0 ) > ̃

 h (x 0 ) .

ithout losing generality, we can assume that x 0 ∈ [ b, c] . Define

 new function 

ˆ h (x ) = max { h ∗(x ) , ̃  h (x ) } and also define a convex

unction on [ b, c] by ˆ g (x ) = ̂

 h (x ) . Therefore, on the domain of func-

ion ˆ g we have 

ˆ 
 (x ) ≤ g(x ) and 

ˆ g (x ) = max { h ∗(x ) , ̃  h (x ) } 
≥˜ h (x ) = g ∗(x ) , for all x ∈ [ b, c] . (B.12) 

n the other hand, we note that ˆ g (x 0 ) = max { h ∗(x 0 ) , ̃
 h (x 0 ) } >

 

 (x 0 ) = g ∗(x 0 ) , hence ˆ g (x ) 
 = g ∗(x ) for some x ∈ [ a, b] . Combining

ith (B.12) , a contradiction occurs since g ∗ is the convex envelope 

f g. 

At last we combine Eqs. (B.10) and (B.11) , thus ˜ h ∗(x ) = h ∗(x )

olds for all x ∈ [ a, b] , which completes the proof. 

(v i ) Let f n be a piecewise constant function defined on [ a, b] ,

here n − 1 is the number of discontinuity points in the interior 

f the domain, then f n must take the following form: 

f n (x ) = 

n ∑ 

i =1 

y i 1 { x i −1 <x<x i } + 

n ∑ 

i =0 

z i 1 { x = x i } , (B.13) 

here a = x 0 < x 1 < . . . < x n = b and z i ∈ { y i , y i +1 } for 1 ≤ i ≤ n − 1 .

We will prove the result by induction on n . When n = 1 , it is

asy to check that the conclusion holds. Now suppose that the 

onclusion holds for all n ≤ m − 1 , where m ≥ 2 is a positive in-

eger. Now consider the case n = m . Define a new function 

ˆ f (x ) on

 x m 

, x m +1 ] as 

ˆ f (x ) = z m −1 1 { x = x m −1 } + y m 

1 { x m −1 <x<x m } + z m 

1 { x = x m } , x ∈ [ x m 

, x m +1 ] . 

(B.14) 

ence by Eqs. (B.13) and (B.14) , we can rewrite the function as 

f m 

(x ) = f m −1 (x )1 { x 0 ≤x<x m −1 } + 

ˆ f (x )1 { x m −1 ≤x ≤x m } , 

here f m −1 (x ) = 

∑ m −1 
i =1 y i 1 { x i −1 <x<x i } + 

∑ m −1 
i =0 z i 1 { x = x i } is a piecewise 

onstant increasing function with m − 2 discontinuity points on 

he domain (x 0 , x m −1 ) . 

For the function 

ˆ f in (B.14) , there are four different cases. 

pecifically, they are (1) z m −1 ≤ y m 

≤ z m 

, (2) z m 

≤ y m 

≤ z m −1 , (3)

ax { z m −1 , z m 

} ≤ y m 

, and (4) min { z m −1 , z m 

} ≥ y m 

. We only consider

he first case since the other three cases are similar. When z m −1 ≤
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≤ z m 

, it is direct to calculate the convex envelope of the func- 

ion 

ˆ f as follows: 

ˆ f ∗(x ) = 

(
z m −1 + 

y m − z m −1 

x m − x m −1 

(x − x m −1 ) 
)
1 { x m −1 ≤x<x m } + z m 1 { x = x m } x ∈ [ x m −1 , x m ] . 

(B.15) 

With the convex envelope function (B.15) , we define a function ˜ f m 

(x ) as ˜ f m 

(x ) = ( f m −1 ) ∗(x )1 { x 0 ≤x<x m } + 

ˆ f ∗(x )1 { x m ≤x ≤x m +1 } , x ∈ [ x 0 , x m +1 ] . 

(B.16) 

y the inductive assumption, ( f m −1 ) ∗ is a piecewise linear con- 

ex function and its salient points are contained in the set A m −1 = 

 x 1 , . . . , x m −2 } . Without losing generality, we assume that the set of

alient points is just A m −1 . Therefore by letting 

 = sup 

{ 
i ≤ m − 1 

∣∣∣ y m − ( f m −1 ) ∗(x i ) 

x m − x i 
≥ ( f m −1 ) ∗(x i ) − ( f m −1 ) ∗(x i −1 ) 

x i − x i −1 

} 
, 

nd by the definition (B.16) , we have 

 ̃

 f m 

) ∗(x ) = ( f m −1 ) ∗(x )1 { x 0 ≤x<x k } + ( f m −1 ) ∗(x k ) 

+ 

y m 

− ( f m −1 ) ∗(u k ) 

x m 

− x k 
(x − x k )1 { x k ≤x<x m } + z m 

1 { x = x m } . 

herefore, ( ̃  f m 

) ∗ is piecewise linear on the interior of its domain 

ith salient points contained in a subset of A m 

= A m −1 ∪ { x m −1 } ,
here all the elements are the discontinuity points of the function 

f m 

. Finally by the result ( v ), we obtain that ( f m 

) ∗(x ) = ( ̃  f m 

) ∗(x ) for

 ∈ [ a, b] , which completes the proof. �

2. When the distortion function is piecewise constant 

roposition B.1. Theorems 2.1 and 2.2 hold when the distortion 

unction φ is piecewise constant in D − or D + . 

roof. We will only prove the result for the upper bound, since the 

ower bound can be directly obtained by the result of the upper 

ound: inf X M φ(X ) = − sup X M ψ 

(−X ) , where ψ(u ) = 1 − φ(1 − u )

s also a distortion function. 

Let distortion function φ ∈ D − and the distortion function φ be 

iecewise constant on (0,1), then φ can be expressed as 

(u ) = 

n ∑ 

i =1 

y i 1 { u i −1 <u ≤u i } , for all u ∈ [0 , 1] . (B.17) 

here 0 = u 0 < u 1 < . . . < u n = 1 and 0 = y 1 < y 2 < . . . < y n = 1 . 

1) We will first prove the case X ∈ P(μ, σ 2 ) . By results ( iii ), ( i v )
and (v i ) in Lemma B.3 , we know that the convex envelope

function φ∗(u ) is piecewise linear, increasing, and continu- 

ous on (0,1) with φ∗(0) = 0 and φ∗(1) = 1 . Denote the salient

points of φ∗ by u i 1 < u i 2 < . . . < u i j−1 
, and let u i 0 = 0 , u i j = 1 ,

then by (B.17) , we have 

φ∗(u ) = 

j−1 ∑ 

m =1 

(
k m 

(u − u i m ) + y i m 
)
1 { u i m ≤u ≤u i m +1 

} , for all u ∈ [0 , 1] , 

(B.18) 

where k m 

= ( y i m +1 − y i m ) / ( u i m +1 
− u i m ) for 1 ≤ m ≤ j − 1 . Now

we construct a distortion function 

ˆ φ(u ) by 

ˆ φ(u ) = 

j ∑ 

m =1 

y i m 1 { u i m −1 
<u ≤u i m } , for all u ∈ [0 , 1] . (B.19) 

Then it is straightforward to see that φ∗(u ) ≤ φ(u ) ≤
ˆ φ(u ) for all u ∈ [0 , 1] . Applying Lemma B.2 then yields 

sup 

X∈P(μ,σ 2 ) 

M ˆ φ
(X ) ≤ sup 

X∈P(μ,σ 2 ) 

M φ(X ) ≤ sup 

X∈P(μ,σ 2 ) 

M φ∗ (X ) . (B.20) 
1170 
Recalling the result when the distortion function is convex 

( Proposition 2.1 ), we have 

sup 

X∈P(μ,σ 2 ) 

M φ∗ (X ) = μ + σ

√ 

j ∑ 

m =1 

k 2 m 

(u i m − u i m −1 
) − 1 , (B.21) 

and the equality holds if and only if the worst-case distribution 

F (u ) satisfies 

F −1 (u ) = μ + σ
k m 

− 1 √ ∑ j 
m =1 

k 2 m 

(u i m − u i m −1 
) − 1 

a.e., 

for all u i m −1 
≤ u < u i m . 

By (B.19), (B.20) , and (B.21) , we obtain that 

sup 

X∈P(μ,σ 2 ) 

M φ(X ) ≥ sup 

X∈P(μ,σ 2 ) 

M ˆ φ
(X ) ≥ M ˆ φ

(X ∗) 

= μ + σ

√ 

j ∑ 

m =1 

k 2 m 

(u i m − u i m −1 
) − 1 = sup 

X∈P(μ,σ 2 ) 

M φ∗ (X ) . (B.22) 

Combing (B.22) and (B.20) yields sup X∈P(μ,σ 2 ) M φ(X ) = 

sup X∈P(μ,σ 2 ) M φ∗ (X ) , which completes the proof. 

2) Define φ̄(u ) = ( φ(u ) + φ(1 − u ) ) / 2 . It is easy to see that φ̄ is

piecewise constant on (0,1) with φ̄(0) = φ̄(1) = 1 . Hence φ̄ can 

be expressed by the following form: 

φ̄(u ) = 

s ∑ 

i =1 

y ′ i 1 { v i −1 <u< v i } + 

s ∑ 

i =0 

z ′ i 1 { u = v i } , for all u ∈ [0 , 1] , 

(B.23) 

where 0 = v 0 < v 1 < . . . < v s = 1 , z ′ 
0 

= z ′ s = 1 , and z ′ 
i 
∈ { y ′ 

i 
, y ′ 

i +1 
}

for 1 ≤ i ≤ s − 1 . Again by ( iii ), ( i v ) and ( v i ) in Lemma B.3 and

Eq. (B.23) , we know that φ̄∗ is piecewise linear continuous on 

(0,1) with φ̄∗(0) = 1 and φ̄∗(1) = 1 . 

Let v j 0 = 0 and v j l = 1 . Denote the salient points of φ̄∗ by v j 1 <
 j 2 

< . . . < v j l−1 
, then by direct calculation we have 

¯∗(u ) = 

l−1 ∑ 

m =1 

k m 

(u − v j m ) 1 { v j m −1 
≤u< v j m } + k l (u − v j l ) 1 { v j l−1 

≤u ≤v j l } , 

(B.24) 

here k m 

= ( y ′ 
j m 

− y ′ 
j m −1 

) / ( v j m − v j m −1 
) for 1 ≤ m ≤ l and y ′ 

j 0 
= 1 . 

Since φ̄ ≥ φ̄∗, φ̄(0) = φ̄∗(0) , and φ̄(1) = φ̄∗(1) , by equa- 

ion (B.24) , Proposition 2.2 , and Lemma B.2 , we obtain that 

 φ(X ) ≤ μ + 

1 

2 

∫ 1 

0 

q (u ) d ̄φ∗(u ) = μ + 

1 

2 

∫ 1 

0 

(q (u ) − μ) ̄φ′ 
∗(u ) d u 

≤ μ + 

σ

2 

‖ ̄φ′ 
∗(u ) ‖ 2 = μ + 

σ

2 

√ 

l ∑ 

m =1 

k 2 m 

(v j m − v j m −1 
) . (B.25) 

y Proposition 2.2 , the equality in the second inequality in 

B.25) holds if and only if the worst-case distribution F ∗
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atisfies 

 

−1 
X ∗ (u ) = μ + σ

φ̄′ 
∗(u ) 

‖ ̄φ′ ∗(u ) ‖ 2 

= μ + σ
k m √ ∑ l 

m =1 k 
2 
m 

(v j m − v j m −1 
) 

, for v j m −1 
≤ u < v j m . 

(B.26) 

hus by Eq. (B.25) , we have 

sup 
∈P S (μ,σ 2 ) 

M φ(X ) ≤ μ + 

σ

2 
‖ ̄φ′ 

∗(u ) ‖ 2 = μ + 

σ

2 

√ 

l ∑ 

m =1 

k 2 m 

(v j m − v j m −1 
) . 

(B.27) 

n the other hand, 

sup 

X∈P S (μ,σ 2 ) 

M φ(X ) ≥ M φ(X ∗) = μ + 

1 

2 

∫ 1 

0 

(F −1 
X ∗

(u ) − μ) d ̄φ(u ) 

= μ + 

σ

2 

√ 

l ∑ 

m =1 

k 2 m 

(v j m − v j m −1 
) . (B.28) 

Summarizing (B.27) and (B.28) , we obtain that 

up X∈P S (μ,σ 2 ) M φ(X ) = μ + 

σ
2 ‖ ̄φ′ ∗(u ) ‖ 2 , which completes the 

roof. �

3. Another lemma 

To prove Theorems 2.1 and 2.2 by using the piecewise constant 

unction to approximate the given function, we need to establish 

nother lemma. More specifically, this lemma will be used to give 

n estimation for the corresponding convex envelopes of piecewise 

onstant function via the convex envelope of the given function. 

emma B.4. Let f and g be two increasing, convex, and continuous 

unctions defined on [ a, b] . Suppose that g is piecewise linear with 

(x ) ≥ f (x ) for x ∈ [ a, b] and g(b) = f (b) , then 

 b 

a 

(g ′ (x )) 2 d x ≤
∫ b 

a 

( f ′ (x )) 2 d x. 

roof. Let C 1 ([ a, b]) : = { h | h is differentiable almost everywhere 

n (a, b) } , and define a functional l on C 1 ([ a, b]) by 

(h )(x ) = 

h (b) − h (a ) 

b − a 
( x − a ) + h (a ) , h ∈ C 1 [ a, b] . 

t is obvious that l(h ) is a linear function on [ a, b] with l(h )(a ) =
 (a ) and l(h )(b) = h (b) for any h ∈ C 1 ([ a, b]) . We begin by proving

hat 
 b 

a 

(h 

′ (x )) 2 d x ≥
∫ b 

a 

(l(h ) ′ (x )) 2 d x, h ∈ C 1 ([ a, b]) . (B.29)

o this end, we first define function 

ˆ h (x ) on [0,1] as ˆ h (x ) =
h ((b−a ) x + a ) −h (a ) 

h (b) −h (a ) 
, then arrangement gives 

 (x ) = (h (b) − h (a )) ̂ h 

( x − a 

b − a 

)
+ h (a ) . (B.30)

ifferentiating on both sides of Eq. (B.30) yields ∫ b 

a 

(
h 

′ (x ) 
)2 

d x = 

(h (b) − h (a )) 2 

b − a 

∫ 1 

0 

(
ˆ h 

′ (x ) 
)2 

d x 

≥ (h (b) − h (a )) 2 

b − a 

(∫ 1 

0 

ˆ h 

′ (x ) d x 

)2 

= 

∫ b 

a 

(
l(h ) ′ (x ) 

)2 
d x, 

here the first inequality holds due to the Hölder’s inequality. 

Next we prove the conclusion by induction. Denote n the num- 

er of salient points of the function g(x ) . First we note that the
1171 
onclusion holds for n = 0 ( x = a and x = b). Indeed, g(x ) is linear

n this case and by (B.29) we have 
 b 

a 

(
f ′ (x ) 

)2 
d x ≥ ( f (b) − f (a )) 2 

b − a 
≥ (g(b) − g(a )) 2 

b − a 
= 

∫ b 

a 

(
g ′ (x ) 

)2 
d x, 

here the first inequality holds due to the Hölder’s inequality. 

Suppose the conclusion is true for n ≤ m where m is a positive 

nteger, and we then proceed to prove the case n = m + 1 . Let x 0 
e the first salient point of g on (a, b) and denote by 

 1 = inf 
{

x 0 ≤ x ≤ b | f (x ) = 

g(x 0 ) − g(a ) 

x 0 − a 
(x − a ) + g(a ) 

}
. 

ote that x 1 always exists by the conditions restricted on f and g. 

enote by 

f x 0 (x ) = 

{
g(x 0 ) −g(a ) 

x 0 −a 
(x − a ) + g(a ) , x ∈ [ a, x 0 ) , 

f (x ) , x ∈ [ x 0 , b] . 
(B.31) 

bviously, the number of salient points of g on (x 0 , b) is not 

reater than m , then by (B.29), (B.31) , and the inductive assump- 

ion, we obtain that ∫ b 

a 

(
f ′ (x ) 

)2 
d x = 

∫ x 1 

a 

(
f ′ (x ) 

)2 
d x + 

∫ b 

x 1 

(
f ′ (x ) 

)2 
d x 

≥
∫ x 1 

a 

(
f ′ x 0 

(x ) 
)2 

d x + 

∫ b 

x 1 

(
f ′ x 0 

(x ) 
)2 

d x 

= 

∫ x 0 

a 

(
f ′ x 0 

(x ) 
)2 

d x + 

∫ b 

x 0 

(
f ′ x 0 

(x ) 
)2 

d x ≥
∫ x 0 

a 

(
g ′ (x ) 

)2 
d x 

+ 

∫ b 

x 0 

(
g ′ (x ) 

)2 
d x = 

∫ b 

a 

(
g ′ (x ) 

)2 
d x, 

hich completes the proof. �

ppendix C. The projection method 

The algorithm below presents how to find the marginal random 

ariables { X i } n i =1 
explicitly such that M φ(ω 

� X ) attains its maxi- 

um, i.e., 

sup 

∈P(μ, �) 

M φ(w 

� X ) = μ� w + 

√ 

w 

� �w 

√ ∫ 1 

0 

(φ′ ∗(u ) − 1) 2 du , 

hich has been proved in Proposition 2.3 . 

In the above algorithm, { e 1 , e 2 , . . . , e n } in the sixth step means

 standard basis for R 

n . Namely, e i = (0 , 0 . . . , 0 , 1 , 0 , . . . , 0) with 1

ppears at the i th position. 

xample C.1. Suppose ω = (0 . 2 , 0 . 3 , 0 . 5) , μ = (−30 , 10 , 6) , and

= 

⎛ ⎝ 

75 50 
3 −300 

50 
3 100 − 160 

3 

−300 − 160 
3 36 

⎞ ⎠ . Then the worst-case DRM can 

e evaluated explicitly and the worst-case distribution for X ∗ = 

 3 
i =1 ω i X i can be obtained by Corollary 2.3 . By applying the above 

lgorithm, we obtain that 

 1 = 5(X 

∗ − δ1 + δ2 − 6) , 

 2 = 

10 

3 

(2 X 

∗ − δ1 − 2 δ2 + 3) , 

 3 = 2(−2 X 

∗ + 2 δ1 + δ2 + 3) . 

ppendix D. Moments uncertainty 

The assumption about known first two moments requires a 

omplete or a perfect data set, which is generally impossible to 

btain in practice. Therefore, we assume that the mean and covari- 

nce, a vector-matrix pair, belongs to a given subset P of R 

n × U n , 

here U n could describe the set of positive semidefinite matrices 
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Z  
nd possibly with other requirements. P is called an uncertainty 

et. Therefore, the worst-case DRM can be obtained by solving the 

ollowing optimization problem: 

sup 

μ, �

μ� w + 

√ 

w 

� �w · ‖ φ′ 
∗(u ) − 1 ‖ 2 

s.t. (μ, �) ∈ P, 

(D.1) 

here P belongs to the box uncertainty in this paper. 

1. Box uncertainty 

Suppose that the uncertainty set S belongs to a box, i.e., the 

ean and covariance of the underlying distributions have compo- 

entwise bounds: 

 = 

{
(μ, �) : μ− ≤ μ ≤ μ+ , �− ≤ � ≤ �+ , � � 0 

}
, 

here μ− and μ+ are componentwise lower and upper bounds 

or the mean vector μ respectively; �− and �+ are component- 

ise lower and upper bounds for the covariance matrix � respec- 

ively. Since the component interval [�−, �+ ] may not contain a 

ositive semidefinite matrix, we assume that there exists a pos- 

tive semidefinite �0 such that �− ≤ �0 ≤ �+ . See Ghaoui et al. 

2003) for more details about the box uncertainty set. 

Now the optimization problem (D.1) under the box uncertainty 

or the worst-case DRM becomes 

sup 

μ, �

μ� w + 

√ 

w 

� �w · ‖ φ′ 
∗(u ) − 1 ‖ 2 

s.t. μ− ≤ μ ≤ μ+ , �− ≤ � ≤ �+ , � � 0 , 

(D.2) 

imilarly, it is obvious that, the optimization problem (D.2) reduces 

o sup X∈P(μ, �) M φ(w 

� X ) (see Proposition 2.3 ) when the mean and 

ovariance are exactly known, i.e., μ− = μ+ and �− = �+ . 
The optimization problem above can also be solved as an SDP 

roblem. With the SDP duality method we can show that the 

roblem (D.2) is equivalent to the following minimization SDP 

roblem 

inf 
λ±, �±, v 

〈 �+ , �+ 〉 − 〈 �−, �−〉 + λ� 
+ μ+ − λ� 

−μ−

+ v 
∫ 1 

0 

(φ′ 
∗(u ) − 1) 2 d u 

s.t. λ+ ≥ 0 , λ− ≥ 0 , �+ ≥ 0 , �− ≥ 0 , (
�+ − �− w/ 2 

w 

� / 2 v 

)
� 0 , w = λ+ − λ−. 

(D.3) 

herefore, problem (D.3) can be treated as a semidefinite program- 

ing (SDP) problem, which can be solved efficiently by numerical 

ethods ( Grant & Boyd, 2014 ). 
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