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A general urban spreading pattern of COVID-19 and its
underlying mechanism
Hongshen Zhang1, Yongtao Zhang1, Shibo He 1✉, Yi Fang2, Yanggang Cheng1, Zhiguo Shi3,4, Cunqi Shao1, Chao Li1, Songmin Ying5,
Zhenyu Gong6, Yu Liu 2, Lin Dong 2, Youxian Sun1, Jianmin Jia7, H. Eugene Stanley8 and Jiming Chen 1✉

Currently, the global situation of COVID-19 is aggravating, pressingly calling for efficient control and prevention measures.
Understanding the spreading pattern of COVID-19 has been widely recognized as a vital step for implementing non-pharmaceutical
measures. Previous studies explained the differences in contagion rates due to the urban socio-political measures, while fine-
grained geographic urban spreading pattern still remains an open issue. Here, we fill this gap by leveraging the trajectory data of
197,808 smartphone users (including 17,808 anonymous confirmed cases) in nine cities in China. We find a general spreading
pattern in all cities: the spatial distribution of confirmed cases follows a power-law-like model and the spreading centroid human
mobility is time-invariant. Moreover, we reveal that long average traveling distance results in a high growth rate of spreading radius
and wide spatial diffusion of confirmed cases in the fine-grained geographic model. With such insight, we adopt the Kendall model
to simulate the urban spreading of COVID-19 which can well fit the real spreading process. Our results unveil the underlying
mechanism behind the spatial-temporal urban evolution of COVID-19, and can be used to evaluate the performance of mobility
restriction policies implemented by many governments and to estimate the evolving spreading situation of COVID-19.
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INTRODUCTION
As of December 12, COVID-19 has struck over 222 countries,
resulting in >630 million confirmed cases and >6.5 million deaths1.
The maximum of global daily new cases have exceeded 1,000,000,
and situations in many countries are increasingly aggravating. It is
pressing to find efficient ways to suppress the transmission of
SARS-CoV-22–11, which has been recognized as top priority since
the very beginning of the initial outbreak in China and reiterated
by the multidisciplinary online conference on 3 August 2020,
organized by the World Health Organization12.
Recently, resurgences of COVID-19 have been reported in many

countries (e.g., United Kingdom, France, Spain). When a local
resurgence takes place13–15, a fundamental issue for practical control
and prevention is how does COVID-19 spread temporally and
spatially within a city? Many works have explained the differences in
contagion rates due to the urban socio-political measures. Manzira
et al. presents a strong relationship between modes of transporta-
tion(such as traffic volume, bus passengers, pedestrians, and cyclists)
and reported COVID-19 infections16. Lak et al. suggested that the
demographic composition and major neighborhood-level physical
attributes are important factors explaining high infection rates and
mortality17. Ma et al. revealed the policy of mask use in controlling
the transmission of COVID-1918.
Existing works focusing on the spreading pattern of COVID-19

can be summarized into two categories based on the spatial scale:
the spreading of COVID-19 within a specific city or between
different cities or countries. Considering spreading within a
specific city, Hamidi found that the metropolitan population is
one of the most significant predictors of infection rates19. Acuto
et al. proposed that urban equality can engender healthier and

more sustainable societies20. Sharifi et al. introduced the impacts
of COVID-19 on environmental quality, socio-economic impacts,
management and governance, and transportation and urban
design21. Gaisie argued that the evolution of the COVID-19
through built environment attributes such as diversity, destination
accessibility, distance to transit, design, and density22. For
spreading between cities, the relatively wide COVID-19 spreading
pattern focuses on the inter-country, inter-state, or inter-districts
spreading pattern of diseases. Due to the lack of fine-grained data,
previous works23–25 are always not able to compare with real data
of confirmed cases and medical virus detection can not track the
daily trajectory of ten thousands or more confirmed cases. They
fall short on studying fine-grained urban transmission dynamics of
COVID-19, one of the most critical spreading characteristics.
Here, we fill this gap by leveraging the trajectory data of

197,808 smartphone users (including 17,808 anonymous con-
firmed cases) in 9 cities in China. To have a comprehensive
analysis, we select confirmed cases from Wuhan (where the initial
outbreak of COVID-19 took place in China), Beijing and Urumqi
(the cities with COVID-19 resurgences) and other cities (where
cases were mainly imported). We explain the spreading process
through the following three aspects: (1) The general spreading
pattern of COVID-19 in different cities; (2) The underlying
mechanism for the spreading pattern of COVID-19; (3) The
utilization of the spreading pattern for control and prevention of
COVID-19. We find a general spreading pattern existing in all cities:
the spatial distribution of confirmed cases follows a truncated
power-law-like model and the spreading centroid is time-
invariant. Moreover, we reveal that long average traveling
distance results in a high growth rate of spreading radius and
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wide spatial diffusion of confirmed cases in the fine-grained
geographic model. With such insight, we can accurately predict
the shapes of spatial distribution of cases and the time when the
peak of COVID-19 cases arrives. Our results unveil the underlying
mechanism behind the spatial-temporal urban evolution of
COVID-19, and can be used to evaluate the performance of
mobility restriction policies implemented by many governments
and to estimate the evolving spreading situation of COVID-19.

RESULTS
The temporal spreading pattern
We display the difference between the overall spreading centroid
and cumulative spreading centroid until ith period in Fig. 1a, c,
and e for Wuhan, Beijing, and Urumqi, respectively. Interestingly,
as the situation of COVID-19 evolves, cumulative spreading
centroids at different periods in Wuhan, Beijing, and Urumqi are
close to the overall spreading centroid: the mean absolute errors
(MAE) between cumulative and overall spreading centroids in
Wuhan, Beijing, and Urumqi are 0.3 Km, 0.4 Km, and 0.7 Km,
respectively. It is clear to see that the temporal spreading centroid
of COVID-19 has a feature of time invariance. That is, the spreading
centroid is stable and nearly does not migrate during COVID-19
spreading.
We also conduct analysis for the other six cities with a relatively

large number of confirmed cases in China: Xiaogan, Suizhou,
Xiangyang, Huanggang, Guangzhou, and Wenzhou (Supplemen-
tary Fig. 6), where cases are mainly imported. Similar conclusions
for spreading centroid and spreading radius can be made in these
cities. We proceed to perform sensitivity analysis by varying the
number of spreading period L (Supplementary Fig. 5) and find that
L does not have much impact on the observed temporal pattern.
Therefore, the temporal spreading pattern of COVID-19 in China
features time invariance of spreading centroid and slow growth of
spreading radius.
As can be seen in Fig. 1 and Supplementary Fig. 4, there are

significant disparities in growth rate of spreading radius in
different cities and different time periods. To find intrinsic
mechanisms for these disparities, we first divide the spreading
period T (T in Beijing for instance lasted from June 11 to July 10
with 30 days) of each city into two periods L1 and L2 (L1 in Beijing
for instance lasted from June 11 to June 25 with 15 days). Then,
two spreading radii (R1 and R2) can be calculated based on activity
centroids of confirmed cases reported in the spreading periods L1
and L2, respectively. We define the growth rate of spreading radius
as 2(R2−R1)/∣T∣, where ∣T∣ denotes number of days in spreading
period T. Further, we randomly select 20,000 smartphone users in
each city and leverage their trajectory data during the outbreak of
COVID-19 to compute their mean travel distance. Since these

smartphone users are randomly selected, we use this mean
distance (over 20,000 users) to approximate that of all citizens in
each city. Clearly, a large value of mean travel distance reflects a
strong willingness of people for long-distance travelling. Con-
sidering that different control measures imposed in Wuhan and
Urumqi since the outbreak of COVID-19 affected the correspond-
ing mobility pattern and spreading of pandemic significantly
(Fig. 2d, e), we divide the spreading period of these two cities into
two sub-periods: before and after the implementation of travel
restriction, and then calculate mean travel distance and growth
rate of spreading radius in these two sub-periods, respectively.
The correlation analysis results for all nine cities are illustrated in
Fig. 1g. Interestingly, we observe a clear positive correlation
between mean travel distance and growth rate of spreading
radius, indicating that mobility pattern accelerates the urban
spreading of COVID-19.

The spatial spreading pattern
To characterize and visualize spatial spreading pattern, we divide
the geographical area into grids of 1 Km× 1 Km26. The overall
spreading centroid is set as the original point of grids. Confirmed
cases of COVID-19 are then projected into grids according to their
activity centroids. As illustrated in Fig. 2a–c, three-dimensional
histograms are used to describe the spatial distributions of
confirmed cases in Wuhan, Beijing, and Urumqi, respectively, where
the height of each bar represents the case count in each grid.
To analyze the spatial distribution function F(d), driven by human

mobility pattern, we apply the logarithm to the actual distribution of
human mobility pattern as well as the number of confirmed cases
and the distance from the overall spreading centroid in all cities. The
human mobility distributions and spatial distributions F(d) of Beijing,
Urumqi, Xiaogan, Suizhou, and Huanggang exhibit a prominent
linear pattern (Fig. 2d–i, Supplementary Figs. 6 and 7). Although a
significant change in human mobility patterns in Wuhan (Jan. 23)
and Urumqi (Jul. 16) after control measures can be observed
intuitively, corresponding human mobility distributions and spatial
distributions in these cities are surprisingly demonstrated as power-
law model. Therefore, we adopt F(d)= dα for linear regression.
Specifically, we have α=−1.80 for Beijing (the Pearson correlation:
−0.93) and α=−2.15 for Urumqi (the Pearson correlation: −0.93),
respectively.
As shown in Fig. 2g, the spatial distribution of confirmed cases

in Wuhan is power-law-like since it deviates slightly from power-
law model when d is small. Due to the influence of human
mobility patterns in Wuhan during the lockdown period (Fig. 2d),
initial cases have a higher probability to infect susceptible
individuals around the spreading centroid. As a result, the risk of
infection around spreading centroid is much higher than that at

Fig. 1 The temporal spreading pattern of COVID-19. a–f The cumulative spreading centroid and spreading radius in Wuhan, Beijing, and
Urumqi, respectively. g Relation between the mean travel distance of people in each city and the corresponding COVID-19 growth rate.
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distant locations (a significant 92% of cases are close to the
spreading centroid). To have a more accurate quantification of the
spatial distribution of Wuhan, we divide the area into two parts by
their distance to the spreading centroid, and adopt two different
models to fit the data. Specifically, spatial distribution of
confirmed cases around the spreading centroid (d ≤ 18) is fitted
by an exponential model F(d)= αd, and when d > 18 is fitted by a
power-law model. As illustrated in Fig. 2g, F(d), d ≤ 18 is well fitted
by an exponential model with a Pearson correlation of −0.99, and
F(d), d > 18 is well fitted by a power-law model with a Pearson
correlation of −0.96. This indicates that the spatial distribution of
confirmed cases in Wuhan indeed has different characteristics,
depending on the distance to the spreading centroid. We also
observe a similar phenomenon in Xiangyang (Supplementary Fig.
7f). Interestingly, we find that this is mainly determined by human
mobility pattern (to be elaborated on in the next Section).
We also notice that for cities (such as Guangzhou and Wenzhou)

where imported cases are widely scattered, the spatial spreading
pattern is less prominent. It is clear that there are multiple clusters
of confirmed cases in these two cities (Supplementary Fig. 8),
which impacts the power-law-like spatial spreading. Therefore, the
observed spreading pattern does not apply to the case with
multiple infection sources.

The underlying mechanism
The classic susceptible-infected-recovered model (SIR) and its
variants have been widely adopted to understand the transmis-
sion characteristics of infectious diseases. The Kendall model27–29

introduces the spatial dimension to the SIR model and can be
used to explain the spatial-temporal evolution of infectious
diseases. Its differential equations can be expressed as equations
(1)–(3) of supplementary materials. Note that confirmed cases in

China get isolated for medical treatment once they are confirmed
and would not cause further infection. Under such a condition, the
confirmed cases can be regarded as recovered individuals in the
Kendall model. Then, the differential equation for the proportion
of recovered individuals can be written as

∂R
∂t

¼ �λRðx; tÞ þ λI0ðxÞ þ λ 1� exp � 1
λ

Z 1

�1
Rðy; tÞKðx � yÞdy

� �� �
: (1)

where R(x, t) denotes the proportion of recovered individuals at
location x and time t, satisfying R(x, 0)= 0. Note that λ can be
obtained by inverse of the basic regeneration number R0 in the
model, that is, λ= 1/R0= γ/βξ, where γ, β, ξ represents recovery
rate, infection rate and the number of initial susceptible
individuals, respectively. Besides, the kernel function K(x− y) > 0,
satisfying

R1
�1 KðyÞdy ¼ 1, quantifies the probability that an

infected individual at location y visits x. Here, we use power-law
distribution to describe the city-level movement behaviors30,
which can be written as K(Δr)= Δrη. Hereby, K(Δr) represents the
probability for the step size Δr and η, the power-law exponential,
denotes the travel willingness, which has a strong correlation with
the mean traveling distance.
To fit the model for recovered individuals, we first calculate the

parameter η in the power-law distribution by utilizing the mobility
data of anonymous smartphone users, with which to capture the
inherent human movement behaviors for each city. Moreover, the
diagnosed date for each confirmed case and corresponding
activity centroid is also calculated as input of the model. Through
fitting the model (i.e., equation (1)) based on these precalculated
parameters and Least Squares algorithm, we can finally obtain a
set of optimal parameters (λ and I0(x)). Note that we assume initial
confirmed cases originate from the grid (0, 0). The parameter I0(x)
fitted in the model could therefore be written as I0(0, 0). A detailed

Fig. 2 The spatial spreading pattern of COVID-19 in Wuhan, Beijing, and Urumqi. a–c A visualization of the number of confirmed cases in
discretized grids in Wuhan, Beijing, and Urumqi, respectively. d–f The human mobility distribution (dots) as a function of traveling distance
and the fitted models (lines) for Wuhan, Beijing, and Urumqi, respectively. g–i The spatial distributions (dots) as a function of distance from the
overall spreading centroid and the fitted regression lines for these distributions.
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discussion about Kendall model and parameter fitting process are
provided in supplementary materials.
Figure 3a–c illustrate the overall model fitting performance of

recovered individuals R(x, t) for Wuhan, Beijing, and Urumqi, in
which Root-Mean-Square-Error (RMSE) is also added to quantify
the performance of model fitting. The values of RMSE for Wuhan,
Beijing, and Urumqi during whole spreading period are 0.55, 0.18
and 0.57 respectively, indicating that the evolution of recovered
individuals R(x, t) during spreading period can be well captured by
the proposed Kendall model. More results on the performance of
model fitting can be found in Supplementary Fig. 9.
We proceed to study the impact of parameter η in the model on

spatial dispersion of confirmed cases, the number of daily new
confirmed cases, and growth rate of spreading radius during the
whole spreading period. To characterize the spatial dispersion of
confirmed cases, we introduce the concept of Simpson Diver-
gence: div ¼ 1=Σip2i , where pi represents the proportion of
confirmed cases distributed in grids whose distance to overall
spreading centroid is within [i, i+ 1]. Therefore, a small value of div
reflects a high clustering of the confirmed cases, i.e., a large
proportion of confirmed cases are distributed in a small number of
grids. Fig. 3d illustrates the impact of η on spatial dispersion of
confirmed cases. We consider two scenarios under different basic
regeneration number R0: R0 < 1 and R0 > 1. We see that, with the
decrease of η Simpson Divergence decreases to 1, at which all
confirmed cases are distributed in one grid. The impact of η on
growth rate of spreading radius is illustrated in Fig. 3g. Clearly, the
growth rate of spreading radius decreases with the decrease of η,
which is consistent with results in Fig. 3d. Figure 3e and h show
the impact of η on the number of daily reported confirmed cases.
Interestingly, a large η, which means long mean travelling distance

in the human mobility model, results in quick spreading of COVID-
19, which makes the peak of daily reported cases arrives early. This
also shows that travel restriction policies will delay the peak
arrival. Finally, we study the impact of η on the growth rate of
spreading radius. As we can see in Fig. 3f, i, spreading radii under
different η increase with time and converge to a fix value when
R0 > 1. However, when R0 < 1, the spreading radius increases only
when η is relatively large. This indicates that when R0 < 1 and the
mean travelling distance is also low, the pandemic will not spread
spatially. Therefore, η in the mobility model drives the temporal-
spatial spreading process. In practice, we can optimize η by
implementing a specific travel restriction policy to have a desired
control and prevention performance.

DISCUSSION
Previous studies investigated the relationship between human
mobility and spreading patterns of infectious diseases31–33,
revealing that the number of infected cases at the destination
has a strong correlation with the total population and the
weighted distance from the source to the destination, which is
determined by the corresponding population flow. Combining the
population flow data and epidemic simulation model, these works
accurately characterize large-scale spatial-temporal spreading of
epidemics34 and predict future spreading trends35–37. Since the
population flow is driven by human mobility, existing works have
examined the intrinsic mechanism of how human mobility
impacts the spreading of diseases38–40 and provided theoretical
insights about how to mitigate transmission of epidemics through
travel restriction41–43.

Fig. 3 The spatial-temporal model for COVID-19 spreading pattern. a–c The overall model fitting performance. d Relation between travel
willingness η and Simpson divergence. e, h Relation between travel willingness η and daily reported confirmed cases. g Relation between
travel willingness η and the growth rate of spreading radius. f, i Relation between travel willingness η and spreading radius.
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Interestingly, many urban patterns such as urban growth
patterns, human mobility patterns, and income patterns39,44–47

follow the power-law distribution model. Since the a strong
connection between the human mobility pattern and the
spreading pattern, we would intrinsically guest that the spreading
pattern has a similar distribution to the human mobility pattern
and our result can also be viewed as complementary to the
power-law distribution for urban pandemic spreading patterns.
Due to the lack of fine-grained data, previous works are always

not able to compare with real data of confirmed cases and
medical virus detection can not track the daily trajectory of ten
thousand or more confirmed cases. Most works need ideal
assumptions to reconstruct the whole fine-grained spreading
process. In this article, we assume that individuals in China are
homogeneous in the downtown area(less than 100 kilometers)
and highly compliance with government regulations during the
most severe spreading time(less than one month) with a constant
infection rate and the same human mobility patterns before and
after the lockdown policy. We use the data of confirmed cases’
activity centroids to study the spatial-temporal spreading pattern
of COVID-19 in China. The novelty of our model is based on the
trajectory data of anonymous confirmed cases and it would
complement the previous work and shed light on the fine-grained
urban transmission dynamics of COVID-19. Our model is able to
well fitted the whole process of fine-grained spreading pattern
and the spatial-temporal spreading pattern of nine cities is stable.
Our findings can be used to find the most possible infection
center (spreading centroid), evaluate the growth rate, and
estimate the infection risk of different communities in a new
outbreak of COVID-19. Such information is very helpful for
practical control and prevention. One limitation of our study is
that we do not consider the impact of other social factors on city
size, such as civil uprising, disobedience, and other socio-political

factors. Instead, we focus on the downtown area and assume that
the population is homogenous in those grids. The assumption
would neglect the impact of heterogeneous socio-political
factors48–50 and the difference in terrain height, especially in the
city of Urumqi. It would be a possible intersection for future
research. To have a valid conclusion here, we compare with the
real trajectory data of anonymous confirmed cases and study the
spreading pattern of COVID-19 in 9 cities in China, and the results
turn out to be consistent. Therefore, the results have a good
approximation of the fine-grained spreading process.

METHODS
Characterize the activity centroids of confirmed cases
We adopt a collection of trajectory data contributed by anonymous
smartphone users in China. The trajectory data records activity
locations and corresponding timestamps when smartphone users
are using location-based services. Clearly, these data reflect the real-
time activity locations of smartphone users, at which they might get
infected or infect others. To see how the spreading of COVID-19 is
spatially correlated with the activity locations of confirmed cases,
we first characterize their activity locations by a statistical metric:
activity centroid (denoted by σ). The activity centroid of a
smartphone user is defined as the average activity locations
reported by this smartphone user within a given period (e.g.,
1 month). That is, assuming that there are Nj activity locations P

j ¼
fPj1; Pj2; � � � ; PjNj

g for a smartphone user j, the activity centroid σj for

user j, is defined as σj ¼ E Pj
� � ¼ P

kP
j
k=Nj .

We illustrate the calculation of activity centroid σ in Fig. 4a. The
activity centroid should be stable over time for most smartphone
users so that it can represent the intrinsic characteristic of activity

Fig. 4 Activity centroids and visualization of COVID-19 spreading in Wuhan. a An illustration of calculating the activity centroids of
smartphone users based on their activity locations. b–c The cumulative distributions of the mean and variance of the distance between
activity centroids of each smartphone user in 1–6 months and the average centroid. d Visualizing the spatial-temporal spreading of COVID-19
in Wuhan between 22 January 2020 and 27 February 2020.
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locations. For this purpose, we randomly select 20,000 smartphone
users in Wuhan and calculate their activity centroids in different
periods (1–6 months), obtaining 6 activity centroids σj(t), t ∈ [1, 6]
for each smartphone user j. The distances between 6 activity
centroids and the average centroid (i.e., σj ¼

P6
t¼1 σjðtÞ=6) for

each j are then calculated. The mean and standard variance of
these 6 distances for each user are computed and the cumulative
distributions of all smartphone users are displayed in Fig. 4b, c.
Clearly, the mean values of 95.3% smartphone users are <1.5
kilometer (Km) and the standard variance is relatively small. This
implies that the activity locations of smartphone users exhibit
strong stability, independent of the chosen period (see sensitivity
analysis of the periods in Supplementary Fig. 5). Such an intrinsic
behavior can be well captured by the activity centroid.
The most frequently visiting location (MVL) is also a statistical

metric of great interest. It indicates the activity location that a
smartphone user visits most frequently. We calculate the
percentage of top k (k= 1, 2,⋯ , 5) activity locations of each
smartphone user and show the average of all 20,000 smartphone
users in Supplementary Fig. 2a–c. The MVL (i.e., top 1 activity
location) only accounts for about 45% of all activity locations, that
is, more than one-half of activity location information is not
utilized by MVL to characterize the activity behavior. Further, the
performance of the metric of top k activity locations approaches
that of activity centroid when k increases (see detailed information
in Supplementary Fig. 2d–i). Therefore, we choose activity centroid
as the statistical metric instead of MVL in this article.

Definition of spreading centroids and spreading radius
To characterize the temporal spreading pattern, we divide the
spreading duration in each city into L equal periods, and allocate
confirmed cases in set U into subset Ui if their confirmation dates
are within ith period, i ≤ L. An illustration of division is provided in
the x axis index of Fig. 1a, c, e, where L= 10. Given a set U of all
confirmed cases, we are able to calculate the overall spreading
centroid (denoted by ρ) of U as the average of their activity
centroids, i.e., ρ ¼ EðσÞ, where σ ¼ fσjgj2U . The cumulative
spreading centroid is then defined as corresponding cumulative
value until ith period, that is, the averages of activity centroids of
confirmed cases in set

Si
k¼1 Uk .

We now study the spreading radius γ of set U, defined as
γ= ∑j∈Ud(σj, ρ)/∣U∣, where d(⋅) is the Euclidean distance between
the activity centroid of a confirmed case and the spreading
centroid ρ of a set U of confirmed cases, and ∣U∣ denotes the
number of confirmed cases in U. Obviously, the spreading radius
quantifies the mean distance between confirmed cases’ activity
centroids and the spreading centroid. Similarly, we introduce a
cumulative spreading radius for set

Si
k¼1 Ui . The cumulative

spreading radius in different periods increases slowly over time in
these three cities except for periods with few cases (<10 cases).
By collaborating with Westlake Institute for Data Intelligence

and local institutions for disease control and prevention, we
obtain a dataset of confirmed cases who are also smartphone
users for location-based services, including their activity centroids
and dates of confirmation (see details on the data described in
supplementary materials). We visualize the spreading process of
COVID-19 in Wuhan through a heat map in Fig. 4d. The
introduction of activity centroid enables us to quantify the spatial
and temporal spreading pattern of COVID-19 in the following
sections.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
Activity centroids of confirmed cases in 9 cities in China we analyzed in this article
and other key statistical information used in the analysis are available from data
repository.

CODE AVAILABILITY
The code are available from code repository.
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