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ABSTRACT
This paper examines the spatial relationship between the ambient air pollution level of an apartment and
its property value in the housing market of South Korea. Using detailed transaction data for 2015–2018,
we construct the air pollution index and estimate a two-stage spatial Durbin error model that controls for
both direct and spillover effects. We find that, holding other factors equal, a 1% increase in the air
pollution level can, on average, cause a decrease in the value of a local real property by 0.32% ($879).
Spatially heterogeneous effects of air pollution on housing prices are investigated, and air pollution is
found to have a more significant direct impact on the urban housing market than in rural areas. Moreover,
rising air pollution levels in urban centers can raise housing prices in suburban and rural areas, suggesting
a strong spillover effect of air pollution and potential migration towards better air quality. The findings in
this paper have profound implications for analyzing the spatial impacts of air pollution on housing prices
and urban development.
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Introduction

The valuation of the accrued benefits of improved air quality has long been the main

focus in assessing the effectiveness of environmental policies that aim to address air

pollution (Freeman et al., 2014). Due to the absence of a formal and explicit market

for clean air, some typical nonmarket valuation techniques have been proposed and widely

used to estimate its value. These modeling methods include hedonic pricing, contingent

valuation, conjoint analysis, and discrete choice model, and most estimates have been

made in the context of real estate markets.1 Given the attributes of available

transaction records of residential properties and measurements of air pollution levels,

this paper adopts the methodology of the hedonic pricing model to estimate an implicit

cost for air pollution. The rationale behind this approach is that homebuyers are

willing to pay less for the residences with a higher air pollution level, ceteris

paribus. Thus, air pollution would be capitalized into the property value and reflected
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in a lower sales price. Using the hedonic approach, we can elicit homebuyers’

preferences for air quality by observing their choice behaviors.

Since the 1980s, South Korea has experienced rapid industrialization, and, as

reported by the Korea Environment Institute, the levels of air pollution, such as ozone

and fine particulate, have largely increased.2 Concurrently, the fast-growing

development and large-scale urbanization have dramatically driven up housing prices in

the real estate market. Given the rising income level and economic growth in South

Korea, more attention has been given to the quality of the living environment,

especially the ambient air quality that influences everyone’s welfare. This surrounding

public good has become an essential factor in the decision-making of a potential home

buyer. Thus, the relationship between air pollution and housing prices in the nation

with a fast-growing housing market is worthy of study. This is the first paper, to the

best of our knowledge, that comprehensively explores how air pollution influences the

housing market in entire South Korea.3 Another aspect of potential improvement in the

existing research arises from the measurements of air pollution in South Korea. Over the

study period, there only exist readings of individual air pollutions, other than an

indicator of overall air pollution.4 In this paper, we construct the air pollution index

(API) ourselves and use the constructed API to measure the influence of air pollution

more generally.

From the perspective of urban planning, accurate economic evaluations of air quality

improvement require a correct identification and consistent estimation of the implicit

price of air quality. Using a hedonic pricing model, numerous researches have provided

empirical pieces of evidence about the value of air quality reflected in the housing

price.5 However, the influence proves to be region-specific, and there has been no

consensus on its magnitude and even direction of the influence. The ambiguity can be

attributed to the lack of considering the spatial effects of air pollution on housing

prices in a non-spatial hedonic model. The ambient air pollution level of a particular

unit influences not only its property value but also the values of other properties in a

locality or other nearby housing markets. It is since home buyers typically perceive

both temporal and geographic variations in air quality when choosing among alternative

housing units in a city or locality. Therefore, the spillover effects of air pollution

need to be controlled for when evaluating its influence on the housing market. The use

of a spatial pricing model in this paper accounts for the strong spillover influence

among other housing and locational attributes. Given the high-density built environment

in most residential areas, the magnitude of these spatial interactions can be more

significant in South Korea than in other nations. In the high-density urban area, the

height of a residence influences not only its scenic view and property value but also

the amenities, like a view of open space and sunlight, for other nearby apartments.

Another aspect of spatial interactions in the hedonic setup comes from the dependent

variable, housing price. The purchase behaviors of home buyers are likely to be

influenced by other bidders, which implies that housing prices can be spatially related.

To fully capture the spatial dependence of various types, this paper adopts a spatial

Durbin error model (SDEM) that incorporates spatial variables in property values, air

pollution, and other housing and locational attributes. Utilizing this spatial modeling

technique, we pursue a comprehensive empirical analysis on the relationship between air

quality and property values, providing the estimates of direct, spillover, and total

effects of air pollution in this paper.



Apart from spatial dependence, the issue of endogeneity in air pollution variables

needs to be fixed in estimating a spatial pricing model. Due to the budget and

technological constraints in the monitoring system of air quality, there commonly exists

a mismatch between locations of residences with price information and sites of

monitoring stations. Some data interpolation techniques are required to get around the

data limitation and obtain interpolated values for the locations in which housing prices

are observed.6 However, all these geostatistical methods bring unexpected endogeneity in

constructing the environmental variables, referred to as errors-in-variables (Anselin &

Lozano-Gracia, 2008). It is primarily due to spatially interpolated values that have a

prediction error correlated with the idiosyncratic error in the spatial hedonic pricing

model. The correlation between two spatial error terms leads to simultaneity bias in the

estimation. To address the issue of endogeneity, we use an instrumental variable for the

interpolated air pollution variable in a spatial two-stage least square model (S2SLS) to

correct the bias.

This paper documents the relationship between air pollution and housing price and

contributes to the existing literature as follows. Firstly, using the detailed

nationwide housing and air pollution data, this is the first research that provides

estimates on the influence of air pollution on the housing market of entire South Korea.

Secondly, we construct an air pollution index in this paper to analyze the influence of

overall air pollution. The index incorporates more information on air pollution and can

be used to capture the perception of air pollution levels better when making a home

purchase decision. Lastly, this paper reports the new estimates using the up-to-date

two-stage spatial hedonic pricing model. Compared to related literature in the context

of South Korea’s real estate market, we address the endogeneity of interpolated air

pollution variables and largely improve the accuracy in estimating the value of improved

air quality due to the advanced methodology.

The main findings in this paper are as follows: (1) There exist heterogeneous effects

of air pollution on the housing market. Specifically, households in urban areas with a

higher level of air pollution have a higher marginal willingness to pay (MWTP) for

improved air quality than those living in rural areas. (2) The central urban air

pollutions have a more substantial spillover effect on suburban and rural housing prices

than that in the opposite direction. The rest of this paper is organized as follows. We

review the related studies in the section of literature review and describe the

empirical background and data in the next section. The spatial pricing model is

introduced in the section of spatial two-stage least square model, followed by the

empirical results outlined in section of estimation results. The final section concludes

the paper.

Literature Review

In the area of nonmarket valuation, the hedonic pricing model has long been the primary

methodology, and this modeling method can be traced back to consumer theory by Lancaster

(1966) and the implicit market model by Rosen (1974). Since then, many studies have

widely adopted the model in estimating the values of air quality improvement in the

context of residential property markets. To describe the vast body of related

literature, two meta-analyses that summarize empirical findings regarding the influence

of air quality on housing prices are first mentioned here. Smith and Huang (1995)

conducted a meta-analysis that covers 37 studies on air pollution and compares 86



estimates of marginal willingness to pay (MWTP) for air quality improvement. They found

that a 0.05–0.10% increase in property values results from improving air quality by one

unit. In more recent work, Chay and Greenstone (2005) argue that the true relationship

between property value and air pollution is primarily obscured by some unobserved

attributes influencing both in a non-spatial analysis.7 The casual ambiguity about how

air quality is capitalized into a property value warrants further investigation using a

more advanced modeling technique. Thus, a spatial Durbin error model (SDEM) is proposed

soon after.8 The SDEM accommodates a more flexible spatial dependence pattern and

enables researchers to analyze the direct, spillover, and total effects of some

environmental attribute (LeSage & Pace, 2009). Many empirical studies also showed that

it yields a better fit to the data than a traditional non-spatial hedonic price model

(Osland, 2010).

The development of a spatial modeling approach largely facilitates the evaluation of

an air quality improvement, and numerous empirical estimates are provided in the context

of housing markets. In the U.S. housing market, some focus on a local urban area

(Anselin & Le Gallo, 2006; Brasington & Hite, 2005), while others estimate its hedonic

value over the national housing market (Chay & Greenstone, 2005). In the non-U.S.

regions, there is also a fast-growing body of studies that cover various places

worldwide. These study areas include, but are not limited to, Madrid (Fernández-Avilés

et  al., 2012), Indonesia (Yusuf & Resosudarmo, 2009), mainland China (Li et  al.,

2014), and Seoul in South Korea (Jun, 2018; Kim et al., 2003). Model identification is

a focal point for an accurate estimate of willingness to pay for air quality

improvement. Much effort has been made to identify and avoid potential endogeneity in

pollution variables from multiple sources. Chay and Greenstone (2005) argue that, when

there exists preference heterogeneity in air quality, environmental indicators can be

endogenous due to a residential sorting by house purchasers. Bayer et al. (2009) point

out the possibility of local air pollution being correlated with unobserved local

locational attributes, which can be addressed using the influence of distant sources to

local air pollution as an instrument. Moreover, the endogeneity in air pollution

measurement can also be generated in the data interpolation process. Anselin and Lozano-

Gracia (2008) propose that data interpolation leads to unexpected endogeneity if there

exists a spatial correlation between locally interpolated air pollution variables and

errors in the main pricing model. In an attempt to fix endogenous air pollution data,

many studies use instrumental variables in a spatial modeling technique and estimate the

values of school quality (Fernández-Avilés et al., 2012), park amenities (McGranahan

et al., 2010), and an ambient power plant (Hoen et al., 2009).

Empirical Background and Data

Air Pollution in South Korea

Over the past decade, the rising air pollution level has become a primary public concern

about environmental quality in South Korea, especially for households living in urban

areas. The residential housing market in South Korea is influenced by the nationwide air

pollution issue, and property values thus change in response to the environmental

amenity. Due to technological advancement and the universal use of a mobile device, the

public has easy access to real-time air quality data all over the entire country. The

free information flow of air quality is of critical importance, in the sense that the



impact of air quality reflected in the housing price depends on how much is known about

it (Clark & Allison, 1999). The accuracy of empirical evidence based on revealed

preferences could be reduced mainly by the limited perceived information. Therefore, in

the context of the housing market in South Korea, almost complete information on air

pollution eliminates the potential concern, which makes it reliable to estimate the

value of improved air quality in light of the price differentials in property values

Geography of the Study Area

The study area of this paper is the entirety of South Korea, comprised of 250 counties

and county-equivalents.9 Figure 1 illustrates the boundaries of geographical units and

spatial distribution of the monitoring system in South Korea. The green areas represent

the metropolitan cities constituted by a couple of counties. It can be seen that there

are more monitoring stations in metropolitan cities than in rural areas. A total of 398

monitoring stations are located over the entire study area, even if no monitors are

sited in a few rural counties. Thus, a data interpolation method is required to estimate

the air pollution level in these places without direct measurements.

Real Estate Data

This paper is conducted with a comprehensive dataset that includes real estate data, air

quality, and locational attributes. The first data source, real estate data, comes from

the database provided by the Ministry of Land, Infrastructure, and Transport, which

includes the transaction records of residential properties and housing attributes.10 In

the database, we obtain sales information of 1,765,631 apartments in 2015–2018,

Figure 1. Geographical boundaries and stations in South Korea.
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including transaction price, floor area, specific address, the floor of an apartment in

the building, year of construction, transaction date (month). There exist a total of

35,821 buildings in our sample, and they are densely distributed across geographic

areas. Panel (a) in Figure 2 presents the geographic variations in housing prices over

the entire nation, and it can be found that metropolitan cities feature much higher

housing prices than the remaining areas.

Air Quality

Air pollution data used in this paper are measured on an hourly basis and obtained from

the Korean Ministry of Environment in South Korea.11 Figure 1 shows the spatial

distribution of all 398 stations. They report six common air pollutants, i.e., sulfur

dioxide (SO2), carbon monoxide (CO), ozone (O3), nitrogen dioxide (NO2), particulate

matter (PM2.5 and PM10).12 Rather than estimating the influence of two specific air

pollutants on housing prices (Kim et al., 2003), we fully utilize the rich information

of the air pollution data and construct a new air pollution index (API).13 The index can

be used to estimate how much residents value the overall air quality in South Korea. Let

 be the levels of six pollutants, the API measured at a site  is given by

the weighted mean:

(1)

where  is the value of air pollutant  measured at the site  and  is the vector

of loadings of all pollutants. We use the principal component analysis (PCA) to obtain

the weights.

Figure 2. Average housing price and air pollution index over 2015–2018 in South Korea. (a) Housing price.
(b) Air pollution index
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Due to the financial constraint, it is impossible to measure the air pollution level

at every location, which makes it necessary to interpolate the pollution data at the

given locations of apartments. Based on the physical attributes of air pollutants, this

paper adopts the ordinary kriging (OK) method assuming a constant local level of air

pollution.14 This interpolation procedure first estimates a spatial variance-covariance

structure by fitting a variogram function of distances and observed values. Then, the

kriging weights of nearby values are calculated by the fitted variogram function. The

ordinary kriging estimator at any particular location becomes a linear combination of

the surrounding values with these kriging weights.15 Given the techniques of data

construction and interpolation, there are essentially two alternative ways of

constructing air pollution levels at the locations of apartments. The two options are 1)

to construct the API at each location of monitors and then obtain the kriged estimates

of API at locations where housing prices are observed but pollution levels are

unknown;16 2) to krige the values of each air pollutant separately in the locations of

apartments and then form the API in these locations.17 Following the proof by Myers

(1983), we take the second option with a less prediction error by first kriging the air

pollution levels and then forming the API with the weights of principal components.18

Table 1 displays the results of fitting variogram functions for each air pollutant and

the principal component analysis in constructing the API. Given the fitted

semivariogram, we first calculate the kriging weights and interpolate the pollution

levels in all locations of apartments for each air pollutant. It is seen that PM10 is

given a much higher weight than other air pollutants, due partially to the fact that it

is the only visible pollutant that has a large perceived risk to health.

Given the weights on principal component and kriged air pollution levels, we

calculate the apartment-specific air pollution index. Panel (b) in Figure 2 shows the

geographic variations in the overall air pollution levels across counties over 2015–

2018. It displays that most urban areas are heavily polluted, while rural counties have

relatively lower air pollution levels.

Locational Attributes

In a hedonic pricing model, all price determinants need to be controlled to attain an

accurate estimate of the coefficient on the variable of interest. To this end, we

collect a broad range of locational attributes at the county level. All attributes are

obtained from the Korean Statistical Information Service (KOSIS).19 It includes

unemployment rate, gross regional domestic product, number of residents, number of cars,

severe crime, number of elementary schools. These variables are measured yearly and

capture the annually time-varying effects that locational fixed effect cannot in our

main identification equation.

Summary Statistics

Table 2 presents the summary statistics of all the variables used in estimating the

spatial hedonic pricing model, including the real estate data, air pollution, housing,

and locational attributes. The economic variables, i.e., housing prices and GDP per

capita, are measured in 2018 U.S. dollars.20 It is shown that the average value of an

apartment is in South Korea comparable with that in the U.S. and that household income

is slightly lower than U.S. household income. As for the floor level, we can observe

that most apartments are in high-rise buildings and relatively new. The locational
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attributes are all in normal ranges and provide much information for local housing

prices.

Spatial Two-Stage Least Square Model (S2SLS)

To estimate the influence of air pollution on housing prices, this paper adopts the up-

to-date spatial two-stage least square model (S2SLS) under the framework of a spatial

Durbin error model (SDEM). The spatial Durbin error model includes spatial lags of both

explanatory variables and error terms as follows (LeSage & Pace, 2009)21:

(2)

where  is the natural log of unit price of the apartment  of building  in

county  sold in month  The vector,  denotes all independent variables, including

air pollution index (API), apartment-specific characteristics, and all other observed

locational attributes. The coefficients on these independent variables,  and 

represent direct and spillover effects, respectively. The monthly fixed effect, 

captures the monthly pattern and other time-variant changes that influence the entire

housing market. Given the large sample and exact address of each building, this spatial

model incorporates building fixed effects,  controlling for all other local unobserved

locational attributes at the lowest possible level. The error term,  could be

spatially correlated, and  is the vector of the error terms.22 The spatial

autoregressive parameter,  measures the existing spatial dependence of unobserved

idiosyncratic errors that influence the property values between nearby areas. The key

component in the spatial hedonic pricing model is the spatial weighting matrix,  that

controls for local spillovers to neighboring observations and describes spatial

influences between nearby apartments as follows:

(3)

The diagonal elements of the matrix are set to zero since there exist no spillover

effects on itself. To fully capture the spatial effects of air pollution, housing, and

locational attributes in the high-density residential areas, we use the most robust

double-power distance weights defined on the following criteria:

(4)

where  is the distance between two apartments.  denotes the maximum radius of

influence (bandwidth), and  is the integer that takes the typical value, 2 (Dou



et al., 2016).23 Given the density of a residential area, the value of the maximum

radius is required to be context-specific. To obtain the radius that well describes the

range of spatial effects in South Korea, we test a few values and find that the radius

of 10 miles can best fit the data in estimating the spillover influence.24 Given the

elements  the symmetric weighting matrix is row-standardized, such that 

After the row standardization, the weighting matrix becomes asymmetric and is then used

in the spatial model.

Given the structure form in Equation (2), we derive the reduced form of the spatial

hedonic model and use the following matrix to represent the spatial effects of -th

independent variable on housing prices:

(5)

where  and  are the coefficients on the -th independent variable. The

diagonal elements of  are the direct effects. The sum of off-diagonal elements

across each row represents the indirect effect of one unit change in -th independent

variable across all spatially correlated observations on the  th housing price.

If we assume that all regressors, except for spatially lagged error terms, are

exogenous, the standard spatial hedonic pricing model, which regresses housing prices on

air pollution index and other control variables, can be estimated using the classic

Maximum Likelihood (ML) procedure. However, the use of interpolated air pollution levels

results in prediction error that is spatially correlated with the overall error term in

the spatial hedonic pricing model (Anselin & Lozano-Gracia, 2008). Therefore, an

instrumental variable (IV) for API is used to estimate the spatial effects of air

pollution on housing prices in a spatial two-stage least square model (S2SLS). Following

the choice of IV by Fernández-Avilés et al. (2012), we adopt spatial coordinates and

lagged APIs to instrument the endogenous air pollution levels. The latitude and

longitude are able to largely proxy the global spatial trend of air pollution, and they

are unlikely to be correlated with the error term in the hedonic model. The lagged APIs

are strongly correlated with the current APIs and can substantially improve the

precision of the instrumented API.

Estimation Results

This section presents the main estimation results of the hedonic pricing models

introduced before and explores the possible heterogeneous effects of air pollution on

local housing markets.

Spatial Hedonic Pricing Models

In an attempt to examine the impacts of air pollution on local property values, we first

test for the possible spatial dependence using an LM-spatial lag test in which a non-

spatial hedonic model is assumed to be the null hypothesis (H0) against a spatial Durbin

error model (H1). The non-spatial model is rejected at the 1% level, showing strong

spatial interactions in price determinants of apartments. Table 3 presents the

estimation results of the non-spatial and spatial models. To interpret the results, we
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report the estimated effects in Equation (5), instead of the estimates of

coefficients.25 All spatial models allow for the remaining spatial autocorrelation and

heteroskedasticity of an unspecified nature using the HAC standard errors (Kelejian &

Prucha, 2007). Column [1] reports the estimation results of the non-spatial hedonic

pricing model. It can be seen that, without controlling for the spatial effects, a

higher level of air pollution is expected to increase a local housing price, ceteris

paribus. The coefficient on the air pollution index is largely biased, and some other

coefficients can also be misleading in the non-spatial model, which proves the

incompleteness of the naïve OLS method.

Table 3. Estimation results of non-spatial and spatial hedonic pricing models. (Table view)

Dependent variable: In(Pibct)
  Non-spatial SLX and SDEM with In(API) instrumented

  OLS Spatial lag of X model Spatial Durbin error model
  Direct Direct Spillover Total Direct Spillover Total

Variables [1] [2] [3] [4] [5] [6] [7]
In(API) 0.3783*** −0.3264*** 0.2555** −0.0709*** −0.3201*** 0.2391** −0.0810***

  (0.0112) (0.0223) (0.1213) (0.0101) (0.0124) (0.1114) (0.0122)
Floor 0.0551** 0.0301** 0.0201*** 0.0502** 0.0441*** 0.0237*** 0.0678**

  (0.0230) (0.0148) (0.0026) (0.0243) (0.0025) (0.0058) (0.0321)
Floor2 −0.0032** −0.0311** 0.0529*** 0.0218** −0.0213*** 0.0424*** 0.0211**

  (0.0013) (0.0148) (0.0046) (0.0102) (0.0078) (0.0026) (0.0109)
Age −0.2485*** 0.2233*** 0.2858*** 0.5091*** 0.4911*** 0.7100*** 1.2011***

  (0.0135) (0.0165) (0.0231) (0.0485) (0.0718) (0.0423) (0.0592)
Unemploy −0.0902*** −0.8023** −0.1289** −0.9312** −0.8023** −0.0898** −0.8921**

  (0.0316) (0.3619) (0.0596) (0.4346) (0.4218) (0.0432) (0.4190)
Gdpper 0.1102** 0.5940*** 0.0674*** 0.6614** 0.5498** 0.0715*** 0.6213**

  (0.0459) (0.1291) (0.0023) (0.0197) (0.2882) (0.0109) (0.3121)
Popden 0.0202** 0.2440*** 0.3051** 0.5491** 0.2132** 0.3309** 0.5441**

  (0.0084) (0.0070) (0.1284) (0.2130) (0.1084) (0.1612) (0.2381)
Carden −0.0102** 0.5520** 0.9608*** 1.5128** 0.7134*** 0.5487*** 1.2621**

  (0.0043) (0.2227) (0.0174) (0.7529) (0.2133) (0.0218) (0.5221)
Crime −0.1002*** −0.7711** −0.6401*** −1.4112*** −0.7789** −0.6728** −1.4517**

  (0.0209) (0.3326) (0.0297) (0.1312) (0.3341) (0.3094) (0.6221)
School 1.2342*** 0.2489** 0.7123** 0.9612** 0.2210*** 0.7202*** 0.9412**

  (0.1956) (0.1219) (0.3446) (0.4182) (0.0482) (0.0322) (0.4613)
Month FE Y Y Y
Building FE Y Y Y
N 1,765,631 1,765,631 1,765,631
Adjusted R2 0.1827 0.2043 0.2591

Notes: Columns [1] presents the coefficient estimates of the non-spatial hedonic pricing model. Columns
[2–4] show the estimation results of the spatial lag of X model. Columns [5–7] show the results of the
spatial Durbin error model. The spatial models are estimated with a radius of 10 miles in the weighting
matrix. The direct and indirect effects are the estimates averaged over all observations arising from
changes in each variable. The robust HAC standard errors are presented in parentheses and are clustered
by county and month. ***p < 0.01, **p < 0.05, *p < 0.1.
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Before estimating the spatial hedonic pricing models, we first attempt to identify

the potential endogeneity in interpolated air pollution levels as a result of spatial

correlation with the disturbance of the spatial model. To this end, we adopt the Durbin-

Wu-Hausman test and reject the hypothesis of exogenous API (Anselin & Lozano-Gracia,

2008).26 To address the endogeneity, we instrument the endogenous air pollution index in

a spatial two-stage least square model (S2SLS) and estimate the economic value of

improved air quality. The validity of the IVs chosen in this paper is tested and

confirmed in the first-stage regression.27 The remaining columns in Table 3 present the

estimation results of the spatial hedonic pricing models with In(API) instrumented. The

spatial models are estimated with a radius of 10 miles in the weighting matrix, and the

robust HAC standard errors are presented in parentheses and are clustered by county and

month. Columns [2–4] and [5–7] show the estimation results of the spatial lag of X

model (SLX) and the spatial Durbin error model (SDEM), respectively. It can be seen that

the two models have parameter estimates similar to each other. Since the SDEM has a

higher adjusted R2 and controls for the potential spatial dependence in the

idiosyncratic errors, we mainly focus on the empirical estimates of SDEM.

Compared with the non-spatial model, the estimates on air pollution from spatial

models become in line with conventional wisdom. In column [5], we find that holding

other factors equal, a 1% increase in the air pollution level can, on average, reduce

the value of the real property by nearly 0.32%. Given the average property value of

$274,012, the marginal willingness to pay (MWTP) for a 1% decrease in air pollution

level is nearly $879 in each dwelling unit. The spillover effect implies a higher air

pollution level by 1% across all nearby areas can increase the property value of this

particular apartment by around 0.24% ($655), holding the air pollution level of this

apartment fixed. It shows more severe air pollution in surrounding areas makes the given

residence more valuable, which in some sense offsets the negative impact of local air

pollution on the property value. The combination of a negative impact of local air

pollution and a smaller positive spillover effect of nearby air pollution yields a much

smaller total effect of regional air pollution. It implies that the higher air pollution

level in South Korea essentially has a significantly negative influence on each

apartment but a smaller influence on the national housing price, which largely

contributes to the simultaneous upward trends in both housing price and air pollution

levels.

Besides the overall air pollution, I estimate the influence of individual air

pollutants on property values in the S2SLS model (2) as a robustness check. Table 4

presents that there exist large variations in the magnitudes of home price elasticity to

individual air pollutants. The visible particulate matter (PM10) and smelly SO2 have a

larger impact on housing prices than the others, due largely to the fact that they are

more perceptible than other air pollutants. The estimates on other air pollutants are

barely significant, suggesting that potential homebuyers in South Korea do not perceive

any risk and respond to these types of air pollution. It also implies that estimating

the spatial model with a single air pollutant can bias the empirical results. Therefore,

this paper adopts the air pollution index for the main analysis.

Table 4. Estimation results of the spatial model with individual air pollutants. (Table view)

Dependent variable: In(Pibct)
  Direct Spillover Total
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Apart from air pollution, the influence of housing attributes is examined. In the

SDEM, we find that there exists a nonlinear relationship between the height and value of

an apartment and that the dwellings in the middle of buildings, holding other attributes

equal, are priced higher than those in the bottom and top.28 As for locational

attributes, it is found that a higher unemployment rate and local crime rate can

decrease a poverty value, while a higher density in households and cars, higher income,

and school quality are positively correlated to local housing prices.

As mentioned before, the hedonic value of air quality improvement obtained from a

spatial model might be sensitive to the model specification. We assess the robustness of

the estimated values by carrying out the model estimation with different specifications.

First, to address the potential spatial interactions among dependent variables, we

estimate the standard spatial Durbin model (SDM) that specifies such spatial dependence

in housing prices across geographical areas.29 Table A1 in Appendix presents the

estimation results of the SDM. Given different assumptions of the air pollution

variable, two estimation methods are used in estimating the spatial Durbin model.

Firstly, assuming the exogeneity of the air pollution index interpolated by the ordinary

kriging method, we use maximum likelihood estimation (MLE) to attain the consistent

coefficients, as reported in columns [2–4]. Columns [5–7] show the results of the

spatial two-stage least square model with spatial coordinates and lagged API as

instruments for endogenous API.30 The significance in the autoregressive coefficient,

ρ, suggests that there exist spatial interactions among local housing prices. However,

since ρ2 is less than 0.04, there exist strong local spillover effects, but the global

spillovers are relatively weak. In addition, the estimated coefficients in the spatial

Durbin model are close to those in the spatial lag of X model (SLX) and spatial Durbin

error model (SDEM). Therefore, the empirical results are mainly discussed with the two

local spatial spillover specifications.

Air pollutant Estimate Std Err Estimate Std Err Estimate Std ErrDependent variable: In(Pibct)
  Direct Spillover Total

Air pollutant Estimate Std Err Estimate Std Err Estimate Std Err
In(PM10) −0.4203*** (0.0209) 0.3002*** (0.0302) −0.1201*** (0.0209)
In(NO2) −0.2211* (0.1212) 0.1609** (0.0828) −0.0602* (0.0354)
In(PM2.5) −0.1492 (0.2082) 0.1808 (0.1712) −0.0287 (0.1098)
In(SO2) −0.3763*** (0.0587) 0.0858*** (0.0246) −0.0405*** (0.0149)
In(CO) −0.1831 (0.1931) 0.1309 (0.1209) −0.0522 (0.1207)
In(O3) −0.1639 (0.1801) 0.1301 (0.2772) −0.0332 (0.2002
In(API) −0.3310*** (0.0341) 0.2482*** (0.0901) −0.0828*** (0.0682)

Notes: This table shows the estimation results of the spatial two-stage least square model with individual
air pollutants. The robust HAC standard errors are presented in parentheses and are clustered by county
and month. ***p < 0.01, **p < 0.05, *p < 0.1.

Table A1. Estimation results of non-spatial and alternative spatial hedonic pricing models. (Table view)

Dependent variable: In(Pibct)
  Non-spatial Spatial Durbin Model with a radius of 10 miles in the weighting matrix
  OLS Exogenous API with ML Endogenous API with S2SLS
  Direct Direct Spillover Total Direct Spillover Total
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Apart from the main spatial model, we further check the robustness of models with

different spatial weighting matrix settings. Figure 3 shows the geographic scale of

metropolitan Seoul and the dense residential area. It can be seen that the area within a

radius of 10 miles is large enough to cover most buildings in this urban area. It can be

seen in the right panel that, within a radius of 100 meters, there are many buildings

located close to each other. The high-density urban area requires an accurate setting of

a spatial matrix.

Variables [1] [2] [3] [4] [5] [6] [7]Dependent variable: In(Pibct)
  Non-spatial Spatial Durbin Model with a radius of 10 miles in the weighting matrix
  OLS Exogenous API with ML Endogenous API with S2SLS
  Direct Direct Spillover Total Direct Spillover Total

Variables [1] [2] [3] [4] [5] [6] [7]
ρ   0.1672***     0.1982***    

    (0.0121)     (0.0241)    
In(API) 0.3783*** −0.2314*** 0.2083*** −0.0231*** −0.3310*** 0.2482*** −0.0828***

  (0.0112) (0.0213) (0.0023) (0.0122) (0.0341) (0.0901) (0.0682)
Floor 0.0551** 0.0525** 0.0171** 0.0696** 0.0345*** 0.0113*** 0.0458**

  (0.0230) (0.0228) (0.0086) (0.0348) (0.0115) (0.0028) (0.0231)
Floor2 −0.0032** −0.0203** 0.1021** 0.0818** −0.0293*** 0.0624** 0.0331***

  (0.0013) (0.0088) (0.0516) (0.0409) (0.0098) (0.0316) (0.0043)
Age −0.2485*** −0.1233** 0.8203** 0.6970** 0.5933** 0.5760*** 1.1693**

  (0.0135) (0.0536) (0.4143) (0.3485) (0.1978) (0.1440) (0.5905)
Unemploy −0.0902*** −0.0849** 0.4941** 0.4093** −0.9055** −0.0369** −0.9424**

  (0.0316) (0.0369) (0.2496) (0.2046) (0.3018) (0.0092) (0.4760)
Gdpper 0.1102** 0.0940*** 0.3174** 0.4114** 0.6954** 0.0307** 0.7261**

  (0.0459) (0.0409) (0.1603) (0.2057) (0.2318) (0.0077) (0.3667)
Popden 0.0202** 0.8440** 0.8838** 1.7279** 0.2021** 0.4090** 0.6111**

  (0.0084) (0.3670) (0.4464) (0.8639) (0.0674) (0.1022) (0.3087)
Carden −0.0102** −0.8550** 0.3512** −0.5038** 0.8831*** 0.8831*** 1.7662**

  (0.0043) (0.3717) (0.1774) (0.2519) (0.2944) (0.2208) (0.8920)
Crime −0.1002*** −0.7617** 0.8859** 0.1241*** −0.8039** −0.8667** −1.6707**

  (0.0209) (0.1656) (0.2237) (0.0310) (0.1340) (0.1083) (0.4219)
School 1.2342*** 0.8404** 0.2692** 1.1096** 0.3580** 0.6794*** 1.0374**

  (0.1956) (0.2811) (0.1046) (0.4268) (0.0918) (0.1307) (0.4030)
Month FE Y   Y     Y  
Building FE Y   Y     Y  
N 1,765,631   1,765,631     1,765,631  
Adjusted R2 0.1827   0.2443     0.2709  

Notes: Columns [1] presents the coefficient estimates of the non-spatial hedonic pricing model. Columns
[2–4] show the estimation results of the spatial Durbin model with exogenous API using ML estimation.
Columns [5–7] show the results of the spatial two-stage least square model with spatial coordinates and
lagged API as instruments for endogenous API. The direct and indirect effects are the estimates averaged
over all observations arising from changes in each variable. The robust HAC standard errors are
presented in parentheses and are clustered by county and month. ***p < 0.01, **p < 0.05, *p < 0.1.
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Table 5 reports the estimated coefficients on the air pollution index with

alternative ranges in the spatial weighting matrix. It shows that the spillover effects

are sensitive to the setting of range in the spatial weighting matrix, while the

estimated direct effects are robust to the range. As a result of sensitivity in

spillover effects, the total influence of air pollution on housing prices could be even

positive under a radius of 20 miles, an unreasonably large range that exceeds the limit

of potential spatial impact in dense urban areas in the South Korea. The goodness of fit

confirms that 10 miles yield the best fit to the data. Therefore, we take the

estimations with 10 miles as the main results to report in Table 3.

Figure 3. High-density urban residential areas in South Korea.

Table 5. Sensitivity to the alternative radius of the weighting matrix. (Table view)

Dependent variable: In(Pibct), S2SLS in SDEM with double-power distance weights
  Model 1 Model 2 Model 3 Model 4 Model 5

Maximum radius (miles) 1 5 10 15 20
ln(API) Estimate Estimate Estimate Estimate Estimate
Direct −0.3587 −0.3231 −0.3201 −0.3903 −0.3219
Spillover 0.1298 0.1344 0.2391 0.3194 0.4215
Total −0.2289 −0.1887 −0.081 −0.0709 0.0996
Apartment characteristics Y Y Y Y Y
Locational attributes Y Y Y Y Y
Month FE Y Y Y Y Y
Building FE Y Y Y Y Y
Adjusted R2 0.1098 0.1278 0.2591 0.201 0.1814
# of observations 1,765,631 1,765,631 1,765,631 1,765,631 1,765,631

Notes: The maximum radius represents the longest distance in which air pollution has a spatial influence,
measured in miles.
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Another factor that potentially influences the estimation results is the choice of

timing in the air pollution level. We explore the time-variant influence of air

pollution on property values and plot time-lagged direct effects in Figure 4. It shows

that a time lag of air pollution up to 12 months has an insignificant impact on the

willingness to pay for better air quality, suggesting that homebuyers in South Korea are

forward-looking. It might also be the case that differences in air pollution levels come

primarily from the geographical, rather than temporal, variations, and the spatial

distribution of air pollution remain almost the same over the entire study period.

Spatially Heterogeneous Effects

Table 3 describes the estimates of average direct and spillover effects of air pollution

on housing prices. Given the complicated spatial relationship between air pollution and

property value, we further investigate the heterogeneous effects of air quality in the

housing market. Using the spatial matrix,  estimated before, we describe the

location-specific relationship between air pollution and housing price and explore the

spatial pattern in the direct and spillover effects of air pollution on local housing

markets.

Figure 5 presents the location-specific direct and spillover impacts of air pollution

on a local housing price. Panel (a) shows that air pollution has a more considerable

direct impact on property value in urban than in rural areas. It implies that urban

households with a higher income on average have a higher demand for better air quality,

and thus, they are willing to pay more for the environmental amenity. Panel (b) presents

the spillover effects that vary by location. It can be seen that a higher level of air

pollution in the metropolitan area makes the nearby alternative residences in rural

areas much more valuable, while urban housing prices are not influenced mainly by

changing the air pollution level of surrounding areas. The spatial interactions between

urban and rural housing prices imply that, given an equal increase in the surrounding

air pollution level, urban households are more likely to move to a suburban or rural

area for better air quality than rural households moving to urban areas. Urban

households have a stronger incentive to purchase an alternative apartment in nearby

areas. The spatial pattern of spillover effects predicts an unbalanced urban-rural

migration tendency driven by the long-run environmental concern.

Figure 4. Time-lagged influence of air pollution on property value. Each bar represents the 95% confidence
interval of time lag-specific coefficients.
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Conclusion

This paper investigates the spatial relationship between the value of the real property

and its ambient air pollution in the context of the residential housing market in South

Korea. Using detailed transaction data in 2015–2018, we provide new empirical evidence

regarding the capitalization of air quality in property value and how air pollution has

a spatial influence on the housing market. We first construct a new air pollution index

that incorporates more information on air pollution. It can be more representative of

the perceived air pollution when making a home purchase decision and thus help evaluate

an environmental policy for general air quality. Estimation results of the up-to-date

two-stage spatial Durbin error model present that, holding other factors equal, a 1%

increase in the air pollution level can, on average, reduce a local housing price by

0.32% ($879). In contrast, the increases in nearby air pollution levels by 1% raise the

property value of the particular apartment by 0.24% ($655). The positive spillover

effect due to the higher level of air pollution largely offsets its direct negative

impact, which yields a smaller total effect of regional air pollution. Therefore, it

necessitates the separation of direct and spillover effects when analyzing the influence

of air pollution on the housing price at a larger scale.

Another contribution we make to the existing literature is to explore spatially

heterogeneous effects of air pollution on local housing prices. Air pollution is found

to have a more significant direct impact on urban housing markets than that on rural

markets, showing a higher marginal willingness to pay for better environmental quality

by urban households. Moreover, a rising air pollution level in urban centers raises

housing prices in suburban and rural areas, which implies a strong spillover effect of

urban air pollution on rural housing markets. However, rural air pollution has little

influence on urban property values. The spatial heterogeneity in spillover effects of

air pollution suggests that urban households have a stronger incentive to purchase an

apartment in nearby areas when relocating to a suburban or rural area for better air

Figure 5. Direct and spillover effects of air pollution on local housing prices. (a) Direct impact of API. (b)
Spillover impact of API.
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quality than rural households moving in the opposite direction. The unbalanced spatial

influence on the housing market can influence numerous locational choices made by

households, which eventually contributes to a large-scale residential sorting driven by

air pollution in South Korea.

The empirical findings in this paper have profound implications for housing market

development and urban planning. First, we find that long-lasting air pollution plays a

critical role in future housing prices. The estimated value of air quality improvement

or pollution-related discount in the sales price provides potential home buyers and real

estate developers much information in the decision-making process. From an urban

planner’s perspective, the amenity-driven residential sorting and resulting migration

flow between urban and rural areas can be of great importance to both the labor market

and city development.

Notes

1. All these nonmarket valuation techniques and their applications are introduced and summarized by

Bishop and Boyle (2017).

2. http://www.kei.re.kr/eng/main.kei

3. The estimates of values of air quality improvement presented in previous studies are either

obtained from the survey involved in-person interviews (Kim et al., 2003) or restricted in the

metro area of Seoul (Jun, 2018).

4. It is not until recently that Korean environmental agency reports a Comprehensive air-quality

index (CAI). https://www.airkorea.or.kr/eng/khaiInfo?pMENU_NO=166

5. Many papers are summarized in the two meta-analyses (Simons & Saginor, 2006; Smith & Huang,

1995).

6. The widely used interpolative alternatives include Thiessen polygon (Anselin & Le Gallo, 2006),

inverse distance method (Luechinger, 2009), splines (Luechinger, 2009), kriging (univariate)

(Neill et al., 2007), and co-kriging (multivariate) (Lu, 2018).

7. An example is that economic activities in a local area can impact both property value and air

pollution.

8. In an analogy to the time series fitting model proposed by Durbin (1960), Anselin (1988) named

it as the spatial Durbin error model.

9. We drop the sample in some islands, such as Jeju Island, in this paper since few monitors and

buildings are located in them, and they are distant from the main continent of South Korea.

Including these outliers can bias the estimation of spatial dependence.

10. All real estate transactions are reported to the government in South Korea. This database was

released publicly in 2006 by the government agency. See: http://www.mlit.go.jp/en/index.html

11. http://eng.me.go.kr/eng/web/main.do

12. All the six air pollutants pose a threat to health. Among them, nitrogen oxides (NO2), sulfur

dioxide (SO2), carbon monoxide (CO), PM2.5, and ozone are invisible, while only PM10 is a visible

pollutant.

13. Apart from the overall air pollution level, we test the influence of each air pollution

individually and report the estimation results in Table 4.

14. Rather than a constant mean over the entire area in simple kriging, the average air pollution

level in ordinary kriging is allowed to vary locally by limiting the domain of stationarity

(Anselin & Lozano-Gracia, 2008).

15. In reality, wind direction, strength, and seasonality can also be relevant to local air

pollution levels. Some recent paper utilizes air pollution from the cities in the upwind

direction to construct the instrumental variable (Zheng et al., 2019).

16.  where  is the weight of the air

pollution value measured at the monitoring station at the site 

http://www.kei.re.kr/eng/main.kei
https://www.airkorea.or.kr/eng/khaiInfo?pMENU_NO=166
http://www.mlit.go.jp/en/index.html
http://eng.me.go.kr/eng/web/main.do


17.  where  represents the weight of the

-th air pollutant level at monitoring station 

18. Myers (1983) proves that 

19. http://kosis.kr/eng/aboutKosis/Introduction.do

20. Average exchange rates are obtained from the World Bank.

https://data.worldbank.org/indicator/pa.nus.fcrf

21. To address the potential spatial interactions among dependent variables, the standard spatial

Durbin model (SDM) that specifies such spatial dependence is also introduced later and estimated

as robustness checks (LeSage, 2014).

22. If there exist no spatial dependence in the vector of error terms,  i.e.,  the

spatial Durbin error model (SDEM) reduces to the spatial lag of  model (SLX) (LeSage, 2014).

23. Some different values of  are also taken and the estimates are found to be robust to the value

of  Thus, we report only the results with  being 2.

24. Table 5 reports the estimates with other ranges, and it turns out to be important in estimating

the value of air quality improvement.

25. The direct and indirect effects are the estimates averaged over all observations arising from

changes in each variable.

26. The Durbin-Wu-Hausman test statistic is 20.90(0.00), which implies the rejection of the null

hypothesis that the API is exogenous.

27. Due to the overidentifying restrictions, we use -test and find that we do not reject the null

hypothesis of instrument exogeneity (Sargan, 1958  The  statistic

(critical value of  at  significance level). Then, we perform a  test to examine the

relevance of the instrument. The API is found to be jointly and significantly correlated to

instrumental variables and exogenous regressors.

28. The main reason that residents generally prefer the units in the middle of a building over those

at the bottom and top is that lower floors usually suffer more noise pollution or are more humid

on rainy days, and, for safety purposes, it is harder to get down to the ground in the case of a

fire at the top of a building (Lo et al., 2001).

29. The spatial Durbin model (SDM) equals the spatial Durbin error model (SDEM), except for the

inclusion of a spatial lag of the dependent variable defined as follows (LeSage, 2014):

(6)

where  is the spatial lag of housing prices.  is spatial autoregressive

parameter measuring the existing spatial dependence of housing prices between nearby areas.

30. We also estimate the spatial model with ML applied to the instrumented regressors and find that

the estimated coefficients are close to those in S2SLS model. It implies that the bias mainly

comes from the endogenous variables, rather than the estimation method itself. The results are

omitted due to space limitation.
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Appendix

Table 1. Fitting results of variogram functions and principal components for pollutants. (Table view)

  Variogram Principal component analysis
Pollutant Semivariogram Nugget Sill Range Weights Eigenvector  of variance
PM10 Spherical
NO2 Circular
PM2.5 Exponential
SO2 Exponential
CO Spherical
O3 Gaussian

Note: The functional forms of valid semivariogram are selected using the ML method.

Table 2. Summary statistics of apartment characteristics and locational attributes. (Table view)

Variable Description N Mean SD Min Max
Apartment-specific characteristics
Unitp Unit price in $/sqft 1,765,631 331.51 210.66 6.16 4,585.11
API Air pollution index 1,765,631 60.44 9.39 14.13 134.1
Price Total price in $ 1,765,631 274,012 221,368 3,500 8,200,000
Area Total floor area in feet2 1,765,631 808.51 288.82 99.67 4,567.34
Floor Floor level of residence 1,765,631 8.75 6.05 1 79
Age Apartment age in years 1,765,631 16.4 8.56 0 57
Locational attributes at the county level
Unemploy Unemployment rate (%) 750 3.52 1.91 2.22 6.93
Gdpper GDP per capita in $ 750 30,957 8,420 19,643 64,438
Popden Population density (p/mile2) 750 4,813 4,604 1,115 16,549
Carden Cars per mile2 750 1,762 1,319 498 5,058
Crime Crimes per 1,000 persons 750 0.49 0.08 0.35 0.76
School # of schools per 100,000 750 11.53 4.91 5.97 22.67

Note: Economic variables are measured in 2018 U.S. dollars.
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